首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
京津冀及周边大气污染综合立体观测网制定了38项观测标准技术规范,开展了高效的综合立体观测,解决了原有站点不足、观测零散、标准不一、要素不全、数据可比性差等问题;注重业务和科研相结合,提升了京津冀及周边地区(“2+26”城市)重污染过程中大气污染化学成分的快速监控能力,对区域空气质量宏观和中、微观演变特征进行动态监测与追踪.区域大气环境综合监测数据库和共享应用平台解决了多源大气环境数据缺乏归一质控、管理、分析和图形影像显示技术,缺乏统一、安全、稳定的数据采集、传输、核验、存储和共享业务化平台的问题,为生态环境部、地方政府和科研机构及研究人员提供全方位数据共享.   相似文献   

2.
区域大气环境污染光学探测技术进展   总被引:2,自引:1,他引:1       下载免费PDF全文
环境污染物的形成、转化、输送和演变过程具有极强的时空相关性,研究和发展能适用于多组分环境污染物的快速、实时、动态监测技术是科学研究工作者面临的重大课题.基于光谱学原理的环境监测技术,由于其具有非接触、无采样、高灵敏度、大范围快速监测等特点,是国际上环境监测技术的主要发展方向之一,并被广泛应用于环境、气象和科学研究等领域.针对京津冀地区大气重污染发生-演变-消散全过程的核心科学问题,通过建立大气污染传输通道立体观测网,开展重污染时段和重污染过程的车载走航、机载观测地基遥感和卫星遥感观测,综合运用大气环境监测网以及超级站等观测平台,获取大气污染物的光学特性、环境气象信息等演变规律,从而推动京津冀及周边地区空气质量的持续改善.光谱学技术在环境监测领域的成功应用,为区域大气和全球环境状况奠定了技术基础.   相似文献   

3.
为揭示大气污染的演变规律,推动京津冀及周边地区空气质量的持续改善,针对大气重污染发生—演变—消散全过程的核心科学问题,在京津冀及其周边地区建立大气污染传输通道立体观测网,围绕2017年秋冬季和2018年春、秋、冬三季开展重污染时段和重污染过程的地基和车载走航观测,评估区域大气污染输送和城市间大气污染的相互传输量.结果表明:北京市污染呈明显的区域性特征,春季主要受区域不利扩散条件及沙尘传输影响,秋季主要受西南通道传输影响,冬季主要受西南、南部、东南通道混合层内传输与区域扩散条件不利的共同影响.秋冬季京津冀地区NO2、SO2污染物垂直柱浓度整体低于西南、东南和南部输送通道区域,当弱南风静稳天气条件主导时,北京市易受到污染物输送的影响,形成局域污染过程.研究显示,北京市重污染时段外来污染物各类尺度输送通道中,西南通道污染传输为主导,部分时段还受到东南和东部通道污染传输的影响.   相似文献   

4.
为实现大气重污染成因与治理攻关项目数据的统一管理和数据共享,基于美国电子政务共享框架(Federal Enterprise Architecture Framework,FEA)方法论和数据中台思想,采用JAVA平台和SOA框架,以大气重污染成因与治理攻关项目科研数据为主,整合全社会大气科学数据资源,面向京津冀、汾渭平原大气污染成因与治理改善分析的核心业务需求,建设集多源异构数据采集、治理、共享、分析、发布于一体的大气环境科学数据采集与共享平台;建立完善的线上数据治理流程,采用多种算法实现大气业务数据集的实时质控;采用分级、分权限的数据共享机制和共享接口动态编辑技术,建立一站式数据枢纽.结果表明:①建立大气科学数据规范分类体系,提供从原始数据、二次数据产品、大气攻关信息发布等多种类型的数据共享服务.②建立海量多源异构综合数据集,包括空气质量、组分、污染源、气象、健康等11类,数据总量4.3 TB,包括7.5亿条数据和66万个文件.③开发交互式GIS服务和线上评估分析工具,实现环境空气质量评估、气象影响分析、组分变化、污染源统计四类主题数据服务.④向大气重污染成因与治理攻关项目各课题组、七省(市)提供多种形式共享,开放104个数据接口,实现21亿条数据、2万份文件、15个专题共享,有力地支撑了大气重污染成因与治理攻关项目的各项研究.   相似文献   

5.
以开发空气质量预报预警信息管理与展示平台为核心内容,基于该管理展示系统平台,综合运用数据库技术、并行计算技术、Web GIS技术和高效网络传输技术等当前先进的信息化技术手段,通过大连市大气重污染天气预测预警系统平台的设计、开发和建设,实现对环境空气质量相关数据的管理和共享、空气质量统计预报、空气质量数值预报、预报会商和信息发布,为进一步明确未来大气污染防治及空气质量保障工作的目标、方向与重点提供决策支持。  相似文献   

6.
回顾了我国京津冀地区大气污染联防联控机制发展历程,从目标效果、制度框架、措施手段等视角系统地阐述了京津冀地区大气污染联防联控机制的实施效果.结果表明:①京津冀地区大气污染联防联控的预期目标(2017年)基本实现,并且随着控制目标逐渐严格,已由年尺度细化至日尺度.②京津冀地区大气污染联防联控顶层制度框架逐渐成熟,运行机制逐渐健全统一,重污染应急管控预案趋向于成本有效性减排策略.③当前大气污染联防联控手段基本为命令控制型,在源头控制上主要采用新源环境准入、老旧源落后产能淘汰、燃煤控制与小规模炉窑综合整治等产业结构优化和能源消耗结构调整策略;在末端控制上,逐步规范和强化大气固定源排污许可证管理制度,实施精细化的移动源、面源排放管理模式.④建议加快建立京津冀地区空气质量管理常设机构,实现大气污染联防联控的长效化;建议实施区域性大气固定源排污许可证制度,在此基础上引入经济刺激型手段,建立基于京津冀地区空气质量改善目标的大气固定源排污权交易制度,让市场机制促使污染源进一步减排和污染控制技术水平的不断提升.   相似文献   

7.
资讯     
正要闻近日,环保部部长李干杰主持召开大气重污染成因与治理攻关领导小组第二次会议暨攻关项目启动大会。会议不仅通过了大气重污染成因与治理攻关实施方案,还决定成立28个跟踪研究专家团队,对京津冀及周边"2+26"城市进行驻点指导。治气"攻关A治气要强化科技支撑环保部部长李干杰表示,当前京津冀及周边地区秋冬季大气污染治理存在薄弱环节,采暖  相似文献   

8.
正中科云天环保科技有限公司(简称"中科云天")是中国科学院计算技术研究所重点孵化的环保高科技企业,致力于构建网格化大气监测传感网络及环境空气质量大数据平台的搭建,提供专业的网格化环境空气质量管理服务。目前推出的环境空气质量管理平台GridAIR和小型化网格化大气监测微站(简称"网格化微站")已成为地方区域空气质量预警预测,污染物排放全天候监管,污染成因分析的有效支撑。通过"物联  相似文献   

9.
2018年11月23日12时晋城市重污染天气应急指挥部批准启动重污染天气黄色预警,同时启动三级响应,我站使用单颗粒气溶胶质谱仪对大气细颗粒物组分特征进行了观测,充分利用了在线观测设备快速、灵敏、实时的特点,对观测点位的环境空气进行了高时间分辨率连续观测,并对观测所取得的数据进行详细分析和研究细颗粒的来源及污染特征,为大气污染治理提供科技支持。  相似文献   

10.
苏皖鲁豫交界地区大气污染形势和问题分析   总被引:1,自引:0,他引:1  
汪旭颖  严刚  雷宇  宁淼 《环境保护》2020,48(17):45-48
苏皖鲁豫交界地区是京津冀及周边地区和长三角地区两大大气污染防治重点区域的连接带。近年来,该地区空气质量改善进展相对较慢,大气污染问题逐渐凸显,已成为全国大气污染最严重的地区之一。本文从大气环境质量状况、区域传输特征、重点源污染特征以及污染治理存在的问题等方面对苏皖鲁豫交界地区大气污染防治形势进行分析,并提出该区域强化大气污染防治要从深化结构调整和污染治理、强化区域联防联控、提升大气环境现代化治理能力三方面进行重点突破。  相似文献   

11.
利用常规气象观测资料、空气质量监测资料、再分析资料和数值模式资料,分析了2014年2月20-26日京津冀地区持续重污染天气过程的环流背景、气象要素特征、静稳天气条件和传输条件.结果表明:2月20-26日,亚洲东部受弱高压脊控制,京津冀及周边地区位于地面高压后部,等压线较为稀疏,气压梯度小,造成地面风速较小;与此同时,混合层高度低,通风系数小和逆温存在,构成重污染天气出现和维持的气象条件,均不利于大气中污染物和水汽的垂直和水平扩散.静稳天气指数对于重污染天气有一定的指示意义,高静稳天气指数通常对应高PM2.5浓度,且二者变化趋势一致性高;2月20-26日静稳天气指数总体上大于2014年1-3月其他几次污染过程,且在高位长时间维持,造成此次污染过程更严重.此外,传输条件也是京津冀重污染天气的主要成因:地面高压西侧的偏南或偏东气流有助于污染物和水汽向京津冀地区输送和聚集,使能见度进一步降低、污染物浓度进一步升高.  相似文献   

12.
对2014-2017年四川盆地和京津冀地区气象数据和污染物浓度数据进行综合评估,在原有全球空气停滞日判别标准基础上发展出本地化空气停滞指数阈值,并以提高两个区域空气质量优良天数为目的建立模型,计算各城市空气停滞发生时PM2.5污染上限浓度参考值.本研究得出,四川盆地和京津冀地区本地化空气停滞日判别标准分别为地面风速 < 2.5 m·s-1、边界层高度 < 500 m和地面风速 < 3 m·s-1、边界层高度 < 300 m.四川盆地冬季空气停滞发生频率四周高,中心小,空气停滞对空气质量的影响西部高于东部;京津冀中部和南部空气停滞频率发生高,空气停滞对空气质量的影响呈现显著的南北差异.四川盆地以成都为中心城市群及京津冀中部和南部地区的高污染排放强度和高空气停滞频率导致重污染事件的频发.本文对我国两个冬季重污染高发的区域进行深入研究,更为客观、量化地评估4年来区域空气质量实际改善程度并初步建立空气质量目标管理模型,以期为区域空气质量达标管理提供可靠的科学依据.  相似文献   

13.
京津冀PM2.5时空分布特征及其污染风险因素   总被引:1,自引:0,他引:1       下载免费PDF全文
为分析京津冀及其周边区域2013年典型污染事件中PM2.5的时空分布特征及污染风险因素,根据国家城市环境空气质量实时发布数据和京津冀地区地理国情信息监测成果,采用空间数据挖掘方法对PM2.5污染的热点区域进行了划分;并采用地理探测器定量分析了PM2.5污染风险因子及其影响程度. 结果表明:在选取的京津冀6个城市中,在PM2.5污染事件统计上存在保定—廊坊—北京—天津—承德—张家口的污染顺序. PM2.5污染在空间上呈河南省(山东省)—河北省—北京市(天津市)一线的带状分布特征,在单次污染事件中,城市间的PM2.5污染存在空间运移关系. 空间热点探测表明,京津冀及其周边区域主要分为5个热点聚集区,其中3个高值区分布在北京市、天津市、河北省和山东省的中部,面积分别为5.31×104、10.26×104、5.04×104 km2. 在8个污染风险因子中,污染企业总数(影响力为0.97,下同)、降水量(0.93)、地形坡度(0.89)对PM2.5污染的影响显著高于其他风险因子;其他风险因子影响力排序依次为人口数量(0.60)、降水量大于0.1 mm的降水日数(0.57)、地表覆盖类型(0.52)、年均相对湿度(0.51)、年均风速(0.33),但风险因子间相比没有显著性差异. 研究显示,京津冀地区PM2.5污染的主要因素是污染物排放,其次,气象要素中的年降水量和自然地理环境中的地形坡度也是影响PM2.5污染特征的重要风险因子.   相似文献   

14.
利用京津冀及周边地区大气污染综合立体监测网,在京津冀大气污染传输通道城市(“2+26”城市)开展了PM2.5及其化学组分长期连续观测,并对数据进行深入分析.结果表明:①2017年、2018年和2019年采暖季“2+26”城市PM2.5浓度平均值分别为(84±62)(95±63)和(80±61)μg/m3,达到了京津冀及周边地区2019—2020年秋冬季PM2.5平均浓度同比下降4%的目标;与PM2.5浓度变化相似,其主要化学组分——有机物(OM)浓度最大值出现在2018年采暖季,但二次无机盐(硝酸盐、硫酸盐和铵盐)浓度呈逐年上升趋势,而元素碳、氯盐、地壳物质和微量元素浓度均呈逐年下降趋势.②OM、硝酸盐、硫酸盐、铵盐、地壳物质、元素碳、氯盐和微量元素浓度空间分布存在明显差异.受污染物排放、气象条件以及地形因素的共同影响,PM2.5及其化学组分浓度高值区主要出现在太行山传输通道城市(保定市、石家庄市、邢台市、邯郸市、安阳市和新乡市).③不同空气质量状况下,“2+26”城市PM2.5化学组分浓度年际变化相似,即随空气污染的加重,硝酸盐、硫酸盐和铵盐占PM2.5的比例均上升,而OM占比下降.研究显示,采暖季“2+26”城市空气质量总体得到改善,但需进一步加强对PM2.5中二次组分的科学管控.   相似文献   

15.
奥运时段北京及近周边区域空气污染观测与比对分析   总被引:9,自引:5,他引:4  
孙志强  吉东生  宋涛  凌宏  王跃思  江长胜 《环境科学》2010,31(12):2852-2859
为研究奥运时段北京与近周边区域空气质量的相互影响,评价区域污染源协同减排对奥运时段北京空气质量的作用,寻求北京空气污染预警的有效途径,2008-06-01~2008-10-03在北京奥运村以及近周边的河北涿州、廊坊、香河、燕郊进行了空气污染联网观测.结果表明,夏秋季节北京和近周边首要污染物均为颗粒物,北京和周边可吸入颗粒物(PM10)平均质量浓度分别为(114±66)μg/m3和(128±59)μg/m3;细粒子(PM2.5)质量浓度则分别为(77±47)μg/m3和(81±51)μg/m3;臭氧质量浓度小时最大值的平均分别为(164±52)μg/m3和(165±55)μg/m3;NOx分别为(58±23)μg/m3和(25±14)μg/m3.相对于6月,奥运会时段(8月8日~8月24日)北京地区PM10、PM2.5、O3、NOx的浓度分别下降69%、62%、18%和41%,残奥会时段(9月6日~9月17日)PM10、PM2.5、O3、NOx的浓度分别下降56%、49%、17%和16%.北京大气中细粒子浓度受周边影响严重,而NOx有向周边扩散的潜势,夏季臭氧则表现出区域污染的特征.结合气象要素分析表明,近周边区域联网观测,有助于北京空气质量预警研究,并可为区域协同防控空气污染提供科学支撑.  相似文献   

16.
本研究结合大气环境观测数据,应用潜在源分析法(PSCF)和浓度权重轨迹分析法(CWT),以及基于WRF-CMAQ模式的传输矩阵和传输通量计算方法,研究分析了2019年秋冬季京津冀典型城市的大气污染特征与成因,量化评估了京津冀地区与周边省份之间的PM2.5传输贡献.结果表明,京津冀地区冬季较秋季污染严重,且重污染时段PM2.5浓度均与相对湿度呈显著的正相关,和风速呈显著的负相关;京津冀典型城市北京、天津和石家庄的潜在源区主要分布在京津冀本地、山西、内蒙古中部地区和山东地区,这与CWT结果基本吻合.京津冀各省域的PM2.5以本地排放贡献为主,北京、天津和河北的本地贡献率范围为54.33%~66.01%,京津冀受区域外传输的贡献率范围为0.11%~26.54%.传输通量结果表明,冬季PM2.5的传输主要受高空西北气流的作用,尤其清洁天气,高风速驱动清洁气团流入;秋季则主要受低空东南气流作用;传输通量呈现出显著的垂直分布特征,高空区域传输作用更为活跃,传输通量的流入/流出以及垂直分布与污染级别和RH呈现非线性响应关系,主导风向变化导致重污染前的传输效应明显大于重污染期间,高湿环境的传输效应明显小于低湿环境.  相似文献   

17.
近年来,随着污染防治攻坚战的不断强化,京津冀及周边地区重污染天气问题初步得到缓解.为了深度改善大气环境质量,落实精准治污,更好地服务于京津冀有毒有毒大气污染物的环境管理,开展了京津冀及周边地区优先控制有毒有害大气污染物名录的研究.以京津冀及周边地区为主要研究对象,采用文献调研法建立备选名单;针对备选名单中的有毒有害大气污染物进行危害信息收集,采用两步筛选法,以危害筛选指标、暴露筛选指标、持久性/生物蓄积性筛选指标共包含10项内容进行赋分求和,筛选出高分值的污染物建立候选名单;在候选名单基础上,从国家排放标准、地方排放标准、监测方法三方面进行筛选,形成优控名录.筛选形成的优控名录包括苯、环氧乙烷、二英类、砷及其化合物、铅及其化合物、甲醛、氯乙烯、三氯乙烯、1,2-二氯丙烷、氯甲基甲醚、铍及其化合物、三氯甲烷在内的12种(类)污染物,可为“十四五”有毒有害大气污染物环境管理及今后京津冀优控名录的公布提供研究基础.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号