首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 138 毫秒
1.
通过对南黄海中部49个表层沉积物样品进行总有机碳,粒度,多环芳烃和甲基菲等GS-MS定量分析,探讨了研究区沉积物中多环芳烃分布特征,分子组成,评估南黄海中部多环芳烃污染水平并识别其来源.研究表明,南黄海中部14种多环芳烃总量(ΣPAHs)在81.63~6567.31 ng/g之间,其中优控多环芳烃(ΣEPA PAHs)11种,含量为29.2~1029.1 ng/g,平均含量255.1 ng/g,与国内外其他地区相比有机污染水平为中-低;苝为研究区内主要多环芳烃,分布较为广泛,其含量占所有PAHs的6.40%~88.85%,低含量苝与人为活动有关,而高含量苝代表了陆源有机质输入;多环芳烃组成,异构体分析和甲基菲特征表明,研究区优控多环芳烃主要为煤和高等植物燃烧或不完全燃烧产物以气溶胶形式输入,但部分样品表现出明显的石油源特性也证实了石油燃料,原油泄露产生的多环芳烃客观存在.  相似文献   

2.
天津地区一些降尘中多环芳烃的含量与分布   总被引:13,自引:0,他引:13  
采集并分析了天津地区2002~2003年16区县23个样点采暖与非采暖期降尘样品中16种优控多环芳烃(PAHs)含量.非采暖期样品16种PAHs含量总和(ΣPAH16)在1 00~48 18μg·g-1间,采暖期样品ΣPAH16在2 54~85 47μg·g-1间.采暖期降尘高含量PAHs主要为萘、菲、荧蒽、和芘,非采暖期降尘PAHs的优势成份包括萘、芴、菲、荧蒽和.除东部工业区外,同一样点采暖期降尘中高环PAHs含量普遍高于非采暖期.采暖期样品各PAHs彼此之间相关性较非采暖期显著.无论是采暖期还是非采暖期,降尘中PAHs主要都是来源于燃煤,交通污染源也占一定比例.  相似文献   

3.
珠江口及南海近海海域大气多环芳烃分布特征   总被引:3,自引:0,他引:3  
分冬、春两次航次分别采集了珠江口及南海近海海域大气气溶胶样品和气相样品,同时以广州和中山作为陆基对照点,对16种EPA优控多环芳烃进行了分析.结果表明,大气PAHs主要以气态化合物为主,总PAHs(气态+颗粒态)的含量范围为49.6~256.6 ng/m3,平均120.7 ng/m3.珠江口海域大气颗粒态多环芳烃季节变化显著,冬、春航次大气颗粒态多环芳烃的含量分别为6.7~18.0 ng/m3和0.4~5.1 ng/m3,冬季航次期间大气颗粒态PAHs含量的高值主要源于大陆气流对城市群大气PAHs污染的输送,另外干冷的季节亦有利于PAHs向颗粒态的富集.与此相反,气态多环芳烃含量的季节差异不明显.在冬季,随东北季风携带的城市粉尘可以将大气中的气态PAHs捕获,而春季航次的大气PAHs主要来源于西太平洋地区的远程输送和PAHs的海-气交换作用.认为受控于季风活动的水、热因子组合特征,是影响珠江口海域大气PAHs含量与分布的主导因素.  相似文献   

4.
北京市通州区河流悬浮物中多环芳烃的分布特征   总被引:4,自引:4,他引:0  
2005年7月—2006年3月用GC-MS内标定量法检测了北京市通州区23个采样点河流悬浮物样品中16种优控多环芳烃(PAHs)含量,并探讨了研究区域悬浮物中PAHs的分布特征.结果表明,通州河流悬浮物中w(PAHs)为1 160.60~27 653.72 ng/g,其中12月最高,10月最低;不同河流之间悬浮物中PAHs含量的差异较大,其中北运河通州河段悬浮物PAHs污染源分布较多;悬浮物中16种PAHs以3环PAH为优势组分,3环及3环以下PAH占PAHs的70%左右;采样点PAHs含量与4环PAH含量有显著的正相关关系,回归分析得到相关度很高的一元线性关系式.   相似文献   

5.
为了解钢铁工业区对土壤环境的影响以及土壤的污染状况,采集上海典型钢铁工业区下风向的14个表层土壤样品,应用气相色谱-质谱联用仪(GC-MS)检测了样品中16种优控PAHs(多环芳烃)的含量水平,分析了钢铁工业区下风向土壤中PAHs的组成分布特征,并利用比值法和主成分分析法对土壤中的PAHs进行溯源.结果表明,钢铁工业区下风向土壤中∑16 PAHs(16种优控PAHs的含量)范围为167.0~2 355.0 μg/kg,∑7PAHs(7种具有致癌作用的PAHs的含量)在∑16 PAHs中平均比例为50.4%,近距离样区(< 1 km)表层土壤中∑16 PAHs平均值最高,为1 057.7 μg/kg,远距离样区(5~10 km)污染相对较轻,平均值为381.4 μg/kg;宝3、宝6和宝9采样点于钢铁工业区烧结工艺的下风向,导致宝3采样点∑16 PAHs最高,为2 355.0 μg/kg,宝3、宝6和宝9采样点土壤中PAHs含量依次降低;表层(0~20 cm)土壤中PAHs单体含量最高的为荧蒽,致癌性最强的苯并[a]芘含量范围为10.0~194.0 μg/kg,环数组成以4环为主,平均比例为46.3%,其次是5~6环,二者平均比例为39.9%,随着距离工业区越远,4环的组成比例越高,5~6环比例降低;比值法和主成分分析法结果显示土壤中PAHs主要来源于石油、煤的燃烧和机动车尾气的排放.研究显示,钢铁工业对多环芳烃贡献较大,下风向土壤中总多环芳烃的含量和高环多环芳烃比例都呈现明显的随距离递减特征,石油、煤的燃烧和机动车尾气的排放是其多环芳烃的最主要来源.   相似文献   

6.
上海市崇明岛农田土壤中多环芳烃分布和生态风险评价   总被引:12,自引:7,他引:5  
为研究崇明岛农田土壤中PAHs浓度分布和生态风险,于2008年采集崇明岛农田表层土壤33个.使用加速溶剂萃取仪(ASE300)进行萃取,经净化后,使用气相色谱-质谱联用仪(GC-MS)测定.结果表明,在采集的土壤样品中,PAHs的含量范围为24.92~1 014.61 ng·g-1(干重),均值为192.83 ng·g-1(干重).16种美国EPA优控的多环芳烃,只有茚并(1,2,3-cd)芘(IcdP)和二苯并(a,h)蒽(DahA)未全部检出.PAHs主要以2~4环为主,其中2环和3环多环芳烃所占比例为42.6%;4环多环芳烃的比例为42.2%;5~6环多环芳烃的比例为15.7%.使用浓度比值法判定,主要来源为石油源以及煤和木材的燃烧;崇明岛生活燃烧和汽车等尾气排放可能是农田土壤中PAHs的重要来源之一.生态效应区间法评价显示,崇明岛农田土壤中PAHs生态风险较小.  相似文献   

7.
采集安徽省内14个采样点的24个室内降尘样品,检测16种多环芳烃(PAHs)含量.结果表明,安徽省不同区域室内降尘中ΣPAHs浓度范围为0.52~89.3 μg/g,平均浓度为20.7 μg/g.降尘中PAHs以5环为主,其次是4环和3环.PAHs组成分析表明,几乎全部样品中PAHs均以高环(4~6环)为主,其高达60.5%~97.0%,仅在4个样品中检出了较高比例的低环PAHs (2~3环).这说明多数室内降尘中PAHs污染由交通运输(汽车和船舶)以及化工厂等高温燃烧排放造成.而安庆、芜湖及六安地区可能存在较严重的石油污染或煤、木材等低温燃烧源污染.公共场所、城市家庭和农村家庭降尘中PAHs的浓度存在明显的差异,总体上呈现:公共场所>城市家庭>农村家庭.异构体分析表明,公共场所和城市家庭内存在混合来源,而农村家庭以燃烧源为主.致癌能力分析表明,城市家庭降尘中的苯并[a]芘当量(BaPE)值略高于农村家庭.公共场所降尘中的BaPE值远大于家庭场所,是农村家庭或城市家庭场所的2倍多.  相似文献   

8.
河南省焦作市作为典型的以煤炭为主要能源的中级工业化城市,研究其城市转型过程中大气环境污染现状及污染物来源具有一定的指示意义。通过采集2013-2014年焦作市4个季度82个PM_(2.5)样品,对其中的16种优控的多环芳烃(PAHs)的含量与组成进行了测定与分析,并对多环芳烃进行了源解析。研究结果表明,焦作市大气中PM_(2.5)的浓度范围为51.32~270.12μg/m~3,平均为152.16μg/m~3;PM_(2.5)中总多环芳烃(TPAHs)的浓度范围是7.6~672.5 ng/m~3,平均为119.22 ng/m~3,其浓度随季节变化明显,冬季秋季春季夏季;PAHs中Ba P的平均浓度为11.93 ng/m~3,BaP当量浓度为30.43 ng/m~3,过量致癌风险值(ICR)达到264.74×10~(-5);多环芳烃组成以4~6环PAHs为主,占TPAHs总量的90%以上,浓度最高的是BghiP、BbF和IcdP。应用特征比值法和主成分分析法对PAHs进行了源解析,显示燃煤和机动车排放是2个最主要的排放源。  相似文献   

9.
利用气相色谱-质谱法(GC-MS)定量分析了2016年冬、春、夏、秋(4个代表月份)沈阳市PM_(10)中16种优控多环芳烃(PAHs)含量。结果表明, PAHs日均浓度变化范围为6.9 ng/m~3~274 ng/m~3,平均值为59.3 ng/m~3。不同环数多环芳烃占总浓度的比例为4环5环6环3环2环,表现出沈阳市明显的燃煤排放特征。通过计算PAHs的苯并(a)芘(Bap)毒性当量浓度(范围0.86 ng/m~3~27.1 ng/m~3,年均值6.5 ng/m~3。),表明沈阳市PAHs对人体健康存在危害。特征化合物比值法和主成分分析法结果表明,煤和木材燃烧及少量的石油挥发是沈阳市大气PM_(10)中PAHs的主要污染源。  相似文献   

10.
2002-10~2005-11采集珠江三角洲典型区域(东莞市、惠州市、中山市、珠海市和佛山市顺德区)的农业土壤表层样品260个,运用气相色谱-质谱方法对美国EPA优控的16种多环芳烃(PAHs)进行分析测定.结果显示,研究区农业土壤中16种PAHs含量范围在3.3~4 079.0 ng·g-1,平均含量244.2 ng·g-1,以3环和4环的PAHs为主;中心城区土壤中PAHs含量高于远郊区,菜地>水稻田>香蕉地>旱坡地果园地>甘蔗地.依据荧蒽/芘及2+3环与4环以上PAHs化合物分布特点,表明该区域农业土壤中PAHs主要来源于化石燃料的不完全燃烧.通过与国内外土壤中PAHs含量的对比,研究区的农业土壤受到一定程度的PAHs污染,含量处于中等水平.  相似文献   

11.
北京东南郊大气中多环芳烃的沉降   总被引:1,自引:1,他引:0       下载免费PDF全文
对2005年3月─2006年1月北京市东南郊气相、总悬浮颗粒物(TSP)以及降尘样品中16种优控PAHs分析发现,降尘样品中2~3环PAHs组分占优势地位,其构成比例与TSP和气相样品差异较大;比较不同采样点、各季节的PAHs沉降速率,对样品中PAHs组分构成比例的特点给予解释,推断PAHs的沉降行为受气象条件、沉降点周围污染源强度以及下垫面性质等因素的影响;对PAHs月均沉降通量与ρ(PAHs)进行相关分析,建立PAHs月均沉降通量与TSP中PAHs总浓度之间的回归方程.   相似文献   

12.
徐州市环境空气TSP中多环芳烃的分布   总被引:2,自引:0,他引:2       下载免费PDF全文
报告了徐州市区秋季环境空气中TSP上多环芳烃的分布状况.索氏提取样品,GC/MS测定出TSP上吸附着14种多环芳烃.其中4苯环数的NFDA1、苯并(b)荧蒽含量有明显优先;3个监测点中有2个测点的苯并(a)芘超标,超标倍数在01~22倍之间;监测点苯并(a)芘质量浓度与多环芳烃质量浓度、多环芳烃质量浓度与总悬浮微粒质量浓度之间成线性关系.   相似文献   

13.
研究自然条件下沉积物中有机污染物沉积后的环境行为,考察澳门南湾湖钻孔沉积物中自由态和束缚态PAHs的含量与分布.研究表明,自由态PAHs以4-环、6,7-环和5-环为主,其质量百分贡献分别为28.7%~40.6%、17.6%~29.6%和13.2%~28.2%;而束缚态PAHs则以4-环、3-环和2-环为主,质量百分贡献分别为42.3%~55.8%、20.2%~35.8%和7.8%~18.8%.说明低分子量PAHs比高分子量PAHs更容易进入沉积有机质的孔隙中.自由态PAHs的垂直分布特征受区域经济发展及环境治理进程的影响,束缚态PAHs的含量一方面受控于PAHs的输入量,另一方面与沉积有机质的结构(特别是聚合程度)有关,随着沉积埋藏时间的延长有利于各化合物从自由态向束缚态转变.  相似文献   

14.
杨萍  王震  陈景文  田福林  葛林科 《环境科学》2008,29(7):2018-2023
测定了雪松(Cedrus deodar)和黑松(Pinus thunbergii)松针的脂含量、气孔密度和比表面积等生理性质及松针中多环芳烃 (PAHs)浓度,考察了松针生理性质对其富集PAHs行为的影响.结果表明,雪松松针中PAHs浓度高于黑松,其平均总浓度(ΣPAHs)分别为(1101±692)ng/g和(518±339)ng/g,2种松针对PAHs的富集能力有较大差异,脂含量是决定松针富集PAHs量的首要因素.2种松针中PAHs组成均以3环和4环PAHs为主,分别占ΣPAHs的56%和31%以上.松针对于3环PAHs的富集能力强于4环PAHs,两者浓度差异约为2倍左右;对于5、6环PAHs,未发现其浓度与脂含量之间的相关关系.由于雪松和黑松松针的脂含量随比表面积具有不同的变化趋势,2种松针中PAHs浓度随比表面积的变化趋势相反.对于5、6环PAHs,松针比表面积和气孔密度对其浓度有显著影响.  相似文献   

15.
珠江三角洲地区大气中多环芳烃的被动采样观测   总被引:7,自引:4,他引:3  
研究了珠江三角洲地区大气中多环芳烃的含量与分布.利用大气被动采样装置,在包括香港在内的珠江三角洲地区共设立了21个大气被动采样点,样品采集时间为2005-08-15—10-14.结果表明,除主要存在于气相中的2~3环PAHs与部分4环PAHs外,聚氨酯泡沫材料(PUF)被动采样器也可在一定程度上采集大气颗粒物中的5~7环PAHs.珠江三角洲地区大气PAHs的含量与组成存在较大差异,珠江三角洲内地采样点PAHs的含量远远高于香港采样点,这主要是受采样点所处的地理位置、气候条件以及能源消费结构的影响.初步研究表明,PUF大气被动采样器可较好地运用于区域大气PAHs污染分布与特征对比研究.   相似文献   

16.
奥运期间北京交通环境细颗粒物中多环芳烃特征研究   总被引:8,自引:1,他引:7  
采用GC/MS测定了奥运空气质量保障措施实施期间(2008年8月)及非奥运时段(2008年6月、2009年8月)北京市北四环道路边PM2.5中12种优控PAHs含量,并应用特征化合物比值法对PAHs来源进行了识别.研究表明,奥运空气质量保障措施实施期问PAHs总浓度平均为4.77 ng·m-3,较非奥运时段下降了59%...  相似文献   

17.
滦河流域多环芳烃的污染特征、风险评价与来源辨析   总被引:14,自引:2,他引:12  
在滦河上、中、下游和河口地区布设了15个采样点,对滦河流域的河水和表层沉积物中多环芳烃(PAHs)进行了分析.结果表明,水中PAHs总量为9.8~310ng.L-1,表层沉积物中PAHs总量最高达478ng.g-1.城市地区河段中PAHs的浓度高于农村河段中PAHs的浓度,河口地区相对中游地区污染较轻.就组成特征而言,水中PAHs以3环(40.9%)、4环(56.2%)为主,表层沉积物中PAHs以3环(30.0%)、4环(39.3%)、5环(15.8%)为主.总的来讲,3环、4环PAHs是滦河流域PAHs最主要的成分.地表水健康风险评价结果显示,韩家营、瀑河口两个采样点苯并[a]芘(BaP)毒性当量值(EBaP)分别为11.8、11.4ng.L-1,超出中国国家环境保护部(CEPA)制定的EBaP=2.8ng.L-1的国家标准,存在不利的健康风险.表层沉积物生态风险评价结果显示,韩家营、上板城、乌龙矶地区的PAHs可能存在着对生物的潜在危害,剩余研究区域不存在生态风险.滦河水和表层沉积物PAHs主要表现为以草、木柴和煤燃烧来源为主的特征,部分样点存在燃油与木柴、煤燃烧的混合来源特征.瀑河口、大黑汀受石油源污染影响明显.  相似文献   

18.
重庆金佛山土壤中PAHs含量的海拔梯度分布及来源解析   总被引:6,自引:5,他引:1  
师阳  孙玉川  梁作兵  任坤  袁道先 《环境科学》2015,36(4):1417-1424
高海拔山区的冷凝效应使其成为了持久性有机污染物(persistent organic pollutants,POPs)的储存库.利用气相色谱-质谱联用仪(GC/MS)测定了重庆金佛山南坡不同海拔高度10个表层土壤样品中多环芳烃(polycyclic aromatic hydrocarbons,PAHs)的含量和组成,运用比值法和主成分分析法解析其污染来源,采用Ba P毒性当量浓度(TEQBa P)评价其生态风险.结果表明,土壤中16种优控PAHs的含量范围是240~2 121 ng·g-1,平均值为849 ng·g-1,并以2~3环为主,7种致癌性PAHs的含量平均占到了总PAHs的17.8%.研究区土壤中不同环PAHs和PAHs的总量都随着海拔的升高有增加的趋势,其中低环的增加趋势最显著,而高环的波动性较大,但不同环PAHs占总PAHs的比例并未随着海拔的升高表现出一定的规律性.研究区土壤中PAHs主要来自于石油源,石油产品以及煤炭和生物质的燃烧源.研究区土壤已受到一定程度的污染,但毒性风险较小.  相似文献   

19.
广州秋季不同功能区大气颗粒物中PAHs粒径分布   总被引:13,自引:8,他引:5  
利用MOUDITM级联分段式采样器采集了秋季广州市区(荔湾采样点和五山采样点)及郊区(新垦采样点)3个采样点的气溶胶样品并使用GC-MS分析了样品中13种多环芳烃的含量.发现3~4环的多环芳烃呈双峰分布,5~7环的多环芳烃呈单峰分布.广州市区和郊区的多环芳烃具有不同粒径分布模式;相对于城区,郊区的多环芳烃存在于更大的颗粒物中,这可能是气溶胶的陈化过程不同导致的.城区的多环芳烃可能主要受吸附作用控制,而郊区的多环芳烃则可能受多种机制控制,如吸附作用、吸收作用和多层吸附.诊断参数值在粒径1~2.5μm和0.1~0.56μm存在较大差异;从浓度上看新垦13种多环芳烃的总浓度为39ng/m3,五山为71~94ng/m3,荔湾为32~154 ng/m3;从组成上看广州市大气颗粒物种多环芳烃以5~7环为主.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号