首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
我国七大流域水体多环芳烃的分布特征及风险评价   总被引:6,自引:3,他引:3  
对我国七大流域水体中16种美国环保署(US EPA)优控多环芳烃(polycyclic aromatic hydrocarbons,PAHs)的质量浓度及其空间分布特征进行了系统地分析和总结,应用物种敏感度分布法(species sensitivity distribution,SSD)评价了8种单体PAHs对水生生物的急性生态风险,分别应用浓度加和模型与效应加和模型评价了ΣPAH_8混合物对水生生物的急性联合生态风险,利用人体暴露风险系数法对PAHs饮水途径健康风险进行评价.结果表明,我国七大流域水体中4环以下的PAHs浓度较高,ΣPAH_(16)浓度均值为2596. 25 ng·L~(-1),高于国外绝大多数水体中ΣPAHs浓度水平;国内外水体中PAHs的组成特征和来源相似;北方水体中ΣPAH_(16)污染比南方水体严重.七大流域水体中萘、苊、芴、菲、荧蒽、芘、蒽对水生生物的潜在影响比例(potential affected fraction,PAF)小于4%.除海河、长江流域外,其它几大流域水体中苯并(a)芘对水生生物的PAF值已超过5%,表明苯并(a)芘对水生生物具有较高的急性生态风险.浓度加和模型不适用于PAHs的水生态风险评价,应用效应加和模型进行的风险评价结果显示,除海河流域外,其它几大流域水体中ΣPAH_8混合物对水生生物的累计潜在影响比例(multisubstance PAF,ms PAF)均高于5%,说明ΣPAH_8混合物对水生生物存在较高的急性联合生态风险.七大流域水体中致癌类PAHs的饮水途径健康风险处于10~(-5)水平,高于US EPA推荐的对致癌物质最大可接受风险水平(10~(-6)),非致癌类PAHs的饮水途径健康风险处于10~(-9)水平,远低于US EPA规定的阈值1,表明我国七大流域水体中PAHs可通过饮水对人体健康产生潜在的致癌风险.  相似文献   

2.
长江口近岸水体悬浮颗粒物多环芳烃分布与来源辨析   总被引:4,自引:0,他引:4  
对长江口近岸水体悬浮颗粒物中的多环芳烃(PAHs)进行了定量分析.结果表明,悬浮颗粒物PAHs总量为2 278.79~14 293.98 ng/g,排污口附近浓度最高,远离排污口浓度降低;就其组成特征而言,以4~6环PAHs为主,2~3环PAHs相对较少.聚类分析表明.除了城市排污外,河口水动力条件也对近岸PAHs分布特征产生一定影响.此外,悬浮颗粒物浓度、有机碳、炭黑含量也是控制近岸PAHs分布的重要影响因素.主成分分析和PAHs特征参数分析发现,近岸水环境中PAHs的主要来源为矿物燃料的不完全燃烧,此外还有少量石油输入.生态风险评价结果显示,大部分PAH化合物均超过ER-L值和ISQV-L值,表明长江口近岸水体悬浮颗粒物中的PAHs已具有不利的生物影响效应.  相似文献   

3.
中国主要河流中多环芳烃生态风险的初步评价   总被引:18,自引:5,他引:13       下载免费PDF全文
以现有的中国主要河流中多环芳烃(PAHs)的浓度数据为基础,通过定义1个危害商,利用商值法筛选出菲、蒽、荧蒽、芘、苯并[a] 蒽、 和苯并[a]芘7种对水生生态具有潜在风险的PAHs.以河流水相中PAHs浓度数据为依据,结合毒性数据库中PAHs水相浓度对水生生物的毒性数据,用概率风险评价法分析了这7种PAHs对水生生物的生态风险.结果表明,7种筛选出的PAHs风险大小依次为:蒽>芘>苯并[a]蒽>荧蒽>苯并[a]芘>菲> .  相似文献   

4.
昌盛  赵兴茹  付青  郭睿  王山军 《环境科学》2016,37(7):2530-2538
为调查输水期于桥水库流域水中多环芳烃(PAHs)的分布特征,采用气相色谱-质谱法对该区16种US EPA优先控制的PAHs进行了分析,并对PAHs的健康风险和生态风险进行了评估.结果表明,在18个点位采集的水样中均有PAHs检出,且上游水域和库区PAHs组分和浓度均存在着显著差异.上游水域水体(除洒河大桥点位外)中的PAHs以2~3环为主,其百分比介于86%~95%,ΣPAHs浓度介于13.7~104.1 ng·L~(-1)间,其中大黑汀水库渔业养殖密集区水体中PAHs污染水平较高;库区水体中低环数和高环数PAHs含量相当,ΣPAHs浓度介于1.6~3 512.5 ng·L~(-1)间,其中库区北岸水中PAHs浓度最高.Flu/Pyr、Fla/(Fla+Pyr)比值分析表明,于桥水库流域PAHs主要来自村镇居民燃煤供暖、生物质燃烧.分别采用US EPA健康风险评价模型和Kalf等使用的商值法对PAHs的饮水致癌风险和生态风险进行了评估,结果显示,库区水体的饮水致癌风险水平超过了10-6,以及库区B[a]A、B[k]F、Bap的商值(实际浓度/最大允许参考浓度)也均大于1,说明库区水体PAHs引发的致癌风险和生态风险均应当引起重视.  相似文献   

5.
王晓迪  臧淑英  张玉红  王凡  杨兴  左一龙 《环境科学》2015,36(11):4291-4301
2012年2~4月采集大庆湖泊群18个典型湖泊30个水体和36个鱼体样品,并对水体和5种鱼组织(鱼鳃、肝脏、鱼脑、肾脏和肌肉)样品中16种多环芳烃(PAHs)浓度进行分析测定.结果显示,水中PAHs总量为0.2~1.21μg·L-1,浓度最高值出现在月亮泡.利用统计学聚类分析方法对18个湖泊水体PAHs浓度进行分类,并进一步应用PAHs比值分析和物种敏感性分布模型对不同湖泊组湖泊水体PAHs分别进行来源分析和生态风险评估.结果表明,18个湖泊水体PAHs浓度统一聚类分成4个湖泊组,其中月亮泡(YLP)和东大海(DDH)两个湖泊分别单独成一类,其他14个湖泊被聚类分为XHH组和DQSK组两个湖泊组.湖泊水体中PAHs除了YLP组主要来自石油污染,其他湖泊PAHs的输入均为木柴和煤燃烧所致.根据国际和国内地表水环境质量标准,大庆湖泊群4个湖泊组水体PAHs浓度水平均有不同程度超标.其中YLP组和XHH组大部分水样中PAHs浓度超出美国环保署(US EPA)规定的16种PAHs限量值,尤其YLP组中致癌性最强的苯并[a]芘浓度已经超过了我国地表水环境质量标准;而DQSK组和DDH组也有少量几种PAHs超出水质标准.大庆湖泊群鲤鱼种和鲢鱼种5种组织器官内16种PAHs浓度检测结果及统计分析结果显示,除鲤鱼鳃中的蒽浓度显著高于鲢鱼鳃,其他15种PAHs在两类鱼种中无显著差异.而同鱼种不同组织器官中PAHs浓度存在明显差异性,肝脏和肾脏作为污染物外源传播的主要器官,其浓度明显高于肌肉、鳃和脑组织中PAHs的浓度,是PAHs在鱼体内累积的重要器官.对水生生物的生态风险和淡水鱼消费健康风险评估结果显示,4个典型湖泊组水体中PAHs对水生生物生态风险均较小,鲤鱼和鲢鱼鱼肉消费也均无饮食健康风险.  相似文献   

6.
2016年7月于北江清远段采集21个水和表层沉积物样品,采用气相色谱质谱(GC-MS)法测定了样品中的PAHs(多环芳烃)含量,分析了北江水环境中PAHs的污染水平,并对其生态风险进行了评价.结果表明,水中ρ(∑PAHs)介于0.4~110.2 ng/L,表层沉积物中w(∑PAHs)(以干质量计,下同)在54.4~819.8 ng/g之间,平均值分别为41.7 ng/L和424.9 ng/g.与国内水体PAHs污染状况相比,北江清远段水中PAHs污染状况处于中低水平,而表层沉积物污染状况处于中等水平.运用特征比值法对PAHs来源进行分析表明,PAHs主要来源为石油泄漏、化石燃料燃烧.采用商值法对水中PAHs进行生态风险评价,∑PAHs和个别单体的最低风险浓度风险商值大于1.0而最高风险浓度风险商值小于1.0,处于中等污染水平;采用效应区间低、中值法对表层沉积物PAHs进行生态风险评价,仅个别点位表层沉积物中苊烯、蒽和二苯并[a,h]蒽超出生态效应低值,对生态环境潜在负面效应较小.研究显示,北江水和沉积物中PAHs潜在风险处于较低水平.   相似文献   

7.
王成龙  邹欣庆  赵一飞  李宝杰 《环境科学》2016,37(10):3789-3797
为研究长江流域水体中多环芳烃(PAHs)污染特征和生态风险,于2015年8月采集了长江干流及主要支流水体样品19个.使用固相萃取方法提取PAHs,经净化后,利用气相色谱-质谱联用仪测定了16种优先控制PAHs(ΣPAHs)的浓度.结果表明,水体中ΣPAHs浓度范围为17.7~110 ng·L-1,平均浓度为42.6 ng·L-1.水体中PAHs主要以低环为主(2~3环),占水体ΣPAHs总量的67.7%.同分异构体比值法表明,研究区PAHs主要来自于化石燃料和木材等生物质燃料燃烧的产物以及石油类物质泄漏和化石燃料燃烧混合产物.正定矩阵因子分解法(PMF)结果表明,研究区PAHs主要有4种来源,依次为:生物质和煤炭燃烧混合源40.1%,石油源19.6%,交通源17.5%,焦炭源22.8%.生态风险评价结果表明,低环PAHs的生态风险处于较高水平,各采样点风险熵值表明,乌江站及下游区域生态风险较高,但总体看来,长江流域总体生态风险处于较低水平.  相似文献   

8.
珠江广州段沉积物中PAHs生态风险的蒙特卡洛模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
以珠江广州段24个采样站位表层沉积物的实测16种多环芳烃(PAHs)浓度为基础资料,采用基于Logistic混沌迭代序列改进的蒙特卡洛算法对珠江广州段沉积物中PAHs的生态风险发生概率进行了定量分析.研究结果表明:PAHs风险排序从大到小依次是:菲>芘>荧蒽> >苯并[a]蒽>苯并[a]芘>二苯并[a,h]蒽.菲、芘和荧蒽引发水生生态风险概率较大,应重点关注.除菲外,其余6种PAHs暴露浓度对生态风险发生概率的贡献率均超过90%,可见PAHs在本区域环境中的风险大小主要取决于其暴露量.  相似文献   

9.
通过测定长江口滨岸9个典型采样点上覆水与表层沉积物样品中的多环芳烃(PAHs)污染水平,分析其组成、时空分布特征及其影响因素,并进行了生态风险评价.结果显示,枯季上覆水中PAHs浓度高于洪季,平均浓度分别为1 988 ng/L和1 727ng/L;表层沉积物中的PAHs也为枯季高于洪季,平均浓度分别为1 154 ng/g和605 ng/g;Phe是水和沉积物中PAH的主要成分.温度是控制上覆水中PAHs季节性差异的主要因素,而有机碳(OC)与碳黑(SC)则控制着沉积物中PAHs的富集;长江口滨岸复杂的水动力条件与各种人类活动产生的污染物输入影响了PAHs的空间分布,在一定程度上也导致了河口滨岸PAHs来源的复杂性.生态风险评价结果显示,长江口滨岸水-沉积物间的PAHs在一定程度上可能对该区生物造成潜在不利影响.其中,上覆水中个别PAH化合物的浓度水平已达到欧美等国生态毒理评价标准或超过了美国EPA水质标准,BaP浓度超过了我国地表水环境质量标准的规定浓度;表层沉积物中部分PAH化合物的含量超过了ER-L值和ISQV-L值.  相似文献   

10.
长江口潮滩表层沉积物中多环芳烃分布特征   总被引:55,自引:1,他引:54       下载免费PDF全文
长江口滨岸潮滩14个表层沉积物中多环芳烃(PAHs)分析表明,PAHs总量分布范围在0.263~6.372mg/kg.多环芳烃含量随取样位置发生明显的变化,主要特征是在近排污口处含量最大,而远离排污口含量趋于降低.依据荧蒽/芘之比以及2+3环与4环以上PAHs化合物分布特点,表明长江口近岸潮滩沉积物中PAHs主要来自石油类污染物的输入.通过与国内外河口潮滩沉积物中PAHs含量的对比,研究区处于低-中等水平,但已有个别PAHs化合物(如蒽、芴)超过基于生物毒性试验的沉积物质量标准,对潮滩生态将构成一定的潜在危害.  相似文献   

11.
长江河口表层沉积物中PAHs的生态风险评价   总被引:8,自引:4,他引:4  
2005年11月26—29日对长江河口部分表层沉积物中多环芳烃类化合物(PAHs)的污染现状进行了调查和研究,分析了其中16种PAHs单体含量. 结果表明,长江河口表层沉积物中属于美国优先控制的16种PAHs共检出15种,仅萘未被检出,w(PAHs)为355.72~2 480.85 ng/g,平均值为1 040.29 ng/g. 表层沉积物中以4环和5~6环PAHs为主,二者之和占w(PAHs)的80%以上. 长江河口表层沉积物中PAHs污染主要来源于矿物燃料的高温燃烧,但部分区域也不排除石油源输入的可能性. 与沉积物风险评估值相比,严重的生态风险在长江河口表层沉积物中不存在,然而排污口附近沉积物存在一定的生态风险.   相似文献   

12.
近期长江口沉积物中SVOCs的变化及生态风险评价   总被引:9,自引:1,他引:8  
采用GC-MS法对2007年4月24—30日采集于长江口部分区域的沉积物中的64种半挥发性有机物(SVOCs)进行分析测定,并对影响该类污染物分布的主要因素进行了探讨. 结果表明,该区域沉积物中定量检出半挥发性有机物15种,包括多环芳烃类化合物8种,取代苯类化合物1种,酚类化合物2种,酯类化合物3种,其他类化合物1种. 其中,属于我国优先控制污染物的有7种,属于美国优先控制污染物的有12种. 采样点SVOCs的分布未呈现出明显的规律性,其分布受多种因素的影响. 应用ERL与ERM指标进行PAHs的生态风险评价,长江口部分区域不存在严重的生态风险. 应用EEC/ERL进行生态风险细分,各采样点分布在无风险与低度潜在生态风险之内,对生态安全威胁不大.   相似文献   

13.
Surface sediment samples collected from twenty-one sites of Yellow River Estuary and Yangtze River Estuary were determined for sixteen priority polycyclic aromatic hydrocarbons (PAHs) by isotope dilution GC-MS method. The total PAH contents varied from 10.8 to 252 ng/g in Yellow River Estuary sediment, and from 84.6 to 620 ng/g in Yangtze River Estuary sediment. The mean total PAH content of Yangtze River Estuary was approximately twofold higher than that of Yellow River Estuary. The main reasons for the di erence may be the rapid industrial development and high population along Yangtze River and high silt content of Yellow River Estuary. The evaluation of PAH sources suggested that PAHs in two estuaries sediments estuaries were derived primarily from combustion sources, but minor amounts of PAHs were derived from petroleum source in Yellow River Estuary. PAHs may be primary introduced to Yellow River Estuary via dry/wet deposition, wastewater e uents, and accidental oil spills, and Yangtze River Estuary is more prone to be a ected by wastewater discharge.  相似文献   

14.
采用GC-MS法对2005年9月8—15日采集于长江口区域的沉积物中的半挥发性有机物(SVOCs)进行测定,并对其组成和空间分布趋势进行了分析. 结果表明,该区域沉积物中共检出半挥发性有机物44种,包括多环芳烃类化合物14种,酯类化合物6种,酚类化合物10种,取代苯类化合物5种,醚类化合物4种,其他类化合物5种. 长江口南支沉积物中w(SVOCs)普遍高于北支入口和徐六泾,南支附近城市排放的工业废水和生活污水可能是该区域半挥发性有机物的主要来源. 沉积物中多环芳烃类化合物(PAHs)的风险评估显示,除C采样点苊存在一定的生态风险外,长江口其他区域PAHs的潜在生态风险很小.   相似文献   

15.
长江下游支流水体中多环芳烃的分布及生态风险评估   总被引:5,自引:4,他引:1  
长江下游地区是我国一个典型的化学工业园区聚集地,化工园区企业生产过程中产生和排放的多环芳烃通过大气沉降、地表径流等方式进入支流水体,并最终汇入长江.本研究选择了典型的支流水体,开展了多环芳烃的分布特征、源解析和生态风险评估研究.结果表明多环芳烃单体以低环为主,总浓度为37.27~285.88 ng·L~(-1),平均值为78.31 ng·L~(-1).PAHs单体浓度范围0~61.35 ng·L~(-1),检出率最低单体为苯并[k]荧蒽和苯并[a]芘,其检出率均为75%.苯并[a]芘是毒性当量因子最大的PAHs,其浓度范围为0~11.08 ng·L~(-1).根据我国《生活饮用水水源水质标准》(CJ 3020-1993)规定,饮用水中苯并[a]芘的限值为10 ng·L~(-1),其中研究区域内无锡市的一个水样(S12)中浓度超出了标准限值,长江下游支流水体的PAHs浓度总体处于低至中等的污染水平.根据比值法和主成分分析的源解析结果,水体中多环芳烃主要受化工排放、汽车尾气的影响,还有部分来自燃煤.生态风险评估结果显示,水体的生态风险处于中等水平,从长期的环境暴露角度出发,应当考虑采取相应地控制措施,防止进一步污染.研究结果可为长江下游支流水环境中多环芳烃风险评估以及化工园区的污染控制提供参考.  相似文献   

16.
长江口作为我国生物多样性最丰富的河口,海洋环境变化对水生生物种群的分布和数量波动都会有重要影响。但在目前该水域的综合监测调查中,多数监测项目缺少采样优化设计的过程。为评价不同采样设计对长江口海洋环境监测结果的影响,本研究使用普通克里金法(ordinary Kriging,OK)对不同海洋环境要素的空间分布进行插值,在此基础上比较定点采样(stationary sampling,SS)、简单随机采样(simple random sampling,SRS)和分层随机采样(stratified random sampling,StRS)3种调查站点设计对长江口中华鲟自然保护区及周边水域的水温、盐度、溶解氧及化学需氧量(COD)等要素的采样效果,结果显示:(1)各环境要素插值结果与实际调查值相近,普通克里金插值能够较好地模拟研究区域的海洋环境状况;(2)3种采样设计的平均采样效果(design effect,DE)为分层随机采样>定点采样>简单随机采样;(3)分层随机采样对水温、盐度和溶解氧的采样效果最好,而对COD的采样效果差别较小。由于长江口水域盐度要素存在明显的空间分布差异,因此,建议在今后的监测设计中,优先采用分层随机采样的方法,以同时满足多数要素的监测需要。  相似文献   

17.
针对我国长江典型江段丰、平、枯不同时期的地表水,采用了固相萃取—气相色谱质谱联用(GC-MS)的分析技术,调查了16种优先控制多环芳烃(PAHs)的污染状况。研究了长江干流PAHs的污染水平和分布特征,并在定量分析的基础上评估了长江干流PAHs的来源和生态风险。结果显示,Σ16PAHs浓度范围为2.22~1450.91ng/L,均值为107.04ng/L,其中,平水期武汉江段Σ16PAHs浓度最高,均值为1050.64ng/L,长江干流PAHs污染状况与近5a国内其他水体相比处于中等偏低水平。空间分布上长江典型江段地表水中Σ16PAHs从上游攀枝花江段到下游南京江段呈现出先上升后下降的趋势;时间分布上Σ16PAHs的变化趋势为平水期(187.78ng/L)>丰水期(73.30ng/L)>枯水期(38.02ng/L)。由同分异构比值法分析表明:在枯水期和平水期中,煤炭、生物质燃烧和石油源是长江干流PAHs的主要来源,而丰水期PAHs主要源于煤炭、生物质燃烧,其中南京江段PAHs的来源较为复杂。采用物种敏感性分布评估法对PAHs进行生态风险评估,结果显示长江典型江段地表水中PAHs尚未对水生生物造成显著的负面影响,与历史数据比对表明现阶段长江干流PAHs生态风险低于长江大保护政策实施前的生态风险。  相似文献   

18.
九龙江河口区多环芳烃分布逸度模型和实测分析   总被引:1,自引:0,他引:1  
于2011年12月(冬季)在厦门九龙江河口及西港采集9个表层海水水样,采用固相萃取-气质联用方法(SPE-GC-MS)分析其中16种多环芳烃含量。研究结果表明,总溶解态态PAH含量为157.9~858.0 ng/L。在河口区,随着盐度升高,PAHs含量逐渐降低。基于比值法分析,表明厦门九龙江及西港海域海水中的PAHs来源存在多种途径,呈现混合来源的态势。利用LEVEL Ⅲ逸度模型研究菲,芘和苯并(a)芘在各介质间的分布以及水气界面的交换通量。模拟结果与本文实测和文献中的实测值相吻合。在16℃时,三种多环芳烃的大气沉降通量分别为17.38,7.86和8.38g/day/m2。其中菲在大气沉降中占主导地位,约三分之二。三种多环芳烃的大气沉降通量均随温度升高而减少。当温度高于32℃时,苯并(a)芘开始从水体释放。  相似文献   

19.
长江口海域底栖生态环境质量评价——AMBI和M-AMBI法   总被引:5,自引:0,他引:5  
蔡文倩  孟伟  刘录三  朱延忠  周娟 《环境科学》2013,34(5):1725-1734
AMBI(AZTI’s Marine Biotic Index)和M-AMBI(Multivariate-AMBI)指数可以有效地评价河口和近岸海域软底质海洋大型底栖动物群落对人为和自然扰动的响应.本研究根据2009年4月在长江口采集的大型底栖动物资料,首次在长江口海域同时运用栖息密度和生物量计算AMBI(BAMBI)和M-AMBI(M-BAMBI),对其进行底栖生态质量评价.结果表明,长江口底栖生态环境皆受到不同程度的干扰,其中受干扰最严重的区域集中在杭州湾、舟山及长江口门区附近海域,与该海域的陆源排污、富营养化以及大量的海岸工程建设等有密切的关系.单因素方差分析表明,运用栖息密度和生物量计算出的两个指数值,评价结果无明显的差异.与AMBI相比,M-AMBI与本研究生物群落结构参数以及环境因子的匹配度更高,能够更有效地评价长江口底栖生态环境质量.Pearson相关分析和一元线性回归分析表明,M-AMBI与底层水体的富营养化指数之间存在线性显著负相关关系,而与表层水体的呈非线性显著负相关;AMBI与富营养化指数之间却无显著相关关系,说明M-AMBI更适合指示长江口水域的富营养化压力.  相似文献   

20.
松花江流域冰封期水体中多环芳烃的污染特征研究   总被引:7,自引:4,他引:3  
在松花江流域的3个主要江段:嫩江、第二松花江和松花江干流,于2010年冰封期采集了21个水体样品,分析了多环芳烃的污染特征.结果表明,15种PAHs的浓度范围为23.4~85.1 ng·L-1,平均浓度为(50.3±17)ng·L-1,与我国其它地区地表水中PAHs的污染程度相当.松花江流域水体中PAHs具有明显的空间分布特征,城市下游浓度高于上游,说明沿岸城市的污水排放可能是松花江水体中PAHs的主要污染源,主成分分析表明,PAHs的主要来源是化石燃料的燃烧源.商值法生态风险评价结果显示,相对分子质量高的PAHs造成的生态风险可以忽略,相对分子质量低的PAHs对松花江水体会造成一定的危害.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号