首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 328 毫秒
1.
为揭示松花江干支流表层沉积物中16种PAHs(多环芳烃)的空间分布特征及其生态风险状况,采用气相色谱-质谱联用仪分析了2017年9月松花江干支流26个表层沉积物16种PAHs质量分数特征,并采用比值法对其污染来源进行解析,运用沉积物质量基准法和质量标准法评价其生态风险状况.结果表明:①松花江干支流表层沉积物中w(∑16PAHs)为169.76~3 769.19 ng/g,以3~6环高环为主,并且支流w(∑16PAHs)(范围为169.76~3 769.19 ng/g,平均值为1 598.41 ng/g)高于干流(范围为459.92~2 092.58 ng/g,平均值为1 173.67 ng/g),呈从上游到下游逐渐降低的趋势.②松花江干支流表层沉积物中w(∑16PAHs)主要来源于生物质燃烧和石油燃烧.③松花江干支流表层沉积物中w(∑16PAHs)总体处于低生态风险水平,个别支流点位(3个)会发产生经常性生态风险.研究显示,松花江流域干支流表层沉积物中w(∑16PAHs)呈从上游到下游逐渐降低的趋势,并且支流高于干流,但总体处于低生态风险水平.   相似文献   

2.
为了解银川市湖泊及城市河流沉积物中多环芳烃(PAHs)污染状况及生态风险,于2018年4~5月在银川市各湖泊及城市河流采集17个表层沉积物样品,采用气相色谱质谱(GC-MS)检测样品中PAHs含量.结果表明,银川市湖泊及城市河流表层沉积物中16种PAHs总含量范围为767.35~3961.53ng/g,平均值为2129.86ng/g,与国内外沉积物中PAHs污染状况相比,银川市湖泊及城市河流沉积物中PAHs污染处于较高水平.来源解析表明,银川市湖泊及城市河流沉积物中主要的污染来源为石油及煤炭等生物质的不完全燃烧.通过效应区间低中值法分析沉积物中PAHs的生态风险评价结果显示,部分采样点表层沉积物中菲的含量超过效应区间中值(ERM);沉积物质量标准法(SQSs)分析沉积物中PAHs生态风险结果表明,萘、苊检测含量在可能效应浓度值(PEL)与频繁效应浓度值(FEL)之间,菲的检测含量高于FEL;风险商值法分析显示苊烯、苊、菲、荧蒽风险熵值RQ>1.综合分析认为沉积物中多环芳烃的污染可能会造成一定程度的生态风险.  相似文献   

3.
于2009年6月分别采集辽河和太湖表层沉积物样品,测定了多环芳烃(PAHs)和有机氯农药(OCPs)的含量.结果表明,辽河表层沉积物中∑PAHs含量(干重)为120.8~22120ng/g,平均值为3281ng/g,处于较高的水平;太湖∑PAHs的含量为256.6~1709ng/g,平均值为829.0ng/g,处于中等水平.两采样区的PAHs以4环和5~6环为主,荧蒽含量最高,PAHs主要因热解产生.辽河和太湖表层沉积物中OCPs的含量均处于较低水平,且均以β-HCH为主.利用相平衡分配法建立了15种PAHs和8种OCPs的沉积物基准值,对沉积物中PAHs和OCPs进行了生态风险评估,结果显示辽河流域的浑河段均有∑PAHs、∑DDTs和∑HCHs超标点位,具有较大的生态风险;太湖流域未发现超标点位,沉积物中各类污染物中含量均未超过基准值,生态风险较小.  相似文献   

4.
为掌握渤海湾天津段多条河流入海区和海滨旅游度假区的近岸海域表层(0~5 cm)沉积物中PAHs(多环芳烃)的污染状况,对该区域表层沉积物中16种US EPA(美国国家环境保护局)优先控制PAHs的分布特征及其来源进行了调查和分析,并评估了其潜在生态风险和概率致癌风险. 结果表明:渤海湾天津近岸海域表层沉积物中w(PAHs)(16种PAHs质量分数之和,以干质量计)为23.9~672.8 ng/g,平均值为228.1 ng/g. 表层沉积物中PAHs的污染程度与历史调查结果相比有所加剧,并且呈复合型污染,在天津港港区外海域主要为石油制品污染,在研究区域南部则主要源于燃煤和生物质的不完全燃烧. 风险评估结果表明,海河入海口附近和研究区域北部存在潜在生态风险;研究区域内概率致癌风险处于较低水平,∑7TEQBaP(7种强致癌PAHs的苯并芘毒性当量浓度之和)占∑16TEQBaP〔16种PAHs的苯并芘毒性当量浓度之和〕的96.8%,其中二苯并蒽的致癌风险最大,其次为苯并芘.   相似文献   

5.
滴水湖水系沉积物中多环芳烃的分布及风险评价   总被引:1,自引:0,他引:1       下载免费PDF全文
2012年,每两个月采集一次上海人工滩涂湖泊——滴水湖水系表层沉积物,检测16种多环芳烃(PAHs)含量.结果表明,滴水湖水系∑PAHs变化范围为74.03~579.20ng/g,平均值为272.55ng/g.其中,闸外引水河[(407.64±6.90)ng/g]≈闸内引水河[(427.99±213.84)ng/g]>滴水湖[(156.33±62.00)ng/g].研究区各点蒽/(蒽+菲)比值均大于0.1,说明PAHs主要来自于石油燃烧源.生态风险评价表明,滴水湖水系沉积物PAHs不存在严重的生态风险,但闸外和闸内引水河沉积物PAHs存在较低几率的潜在风险,湖区沉积物PAHs则无潜在风险.  相似文献   

6.
嵊泗海域是舟山渔场的重要组成部分,属于国家海洋特别保护区.为了解嵊泗海域表层沉积物中16种优控PAHs(多环芳烃)的污染特征及潜在风险,于2017年6月采集了嵊泗海域18个站点的表层沉积物样品,采用气相色谱-质谱联用技术确定PAHs质量分数及其分子组成,运用特征分子比值法和主成分分析法识别PAHs来源,并采用质量基准法与质量标准法对沉积物中PAHs潜在生态风险进行评价.结果表明:①除了Ace与Act外,其他14种PAHs均被检出.除A1站点外,w(Phe)最高,w(Flra)次之.检出的PAHs以3环和4环为主,占总量的71.21%,不同环数PAHs占比大小依次为3环> 4环> 5环> 2环> 6环.w(∑14PAHs)范围为46.38~196.36 ng/g,平均值为109.40 ng/g.整体分布上,嵊泗海域表层沉积物中w(∑14PAHs)呈近岸高于远岸的分布特征.②嵊泗海域表层沉积物中PAHs以煤炭、柴油和生物质等燃烧源为主,部分站点同时受到燃烧源与石油源影响.③各站点的w(∑14PAHs)均低于ERL和OEL,表明嵊泗海域潜在生态风险较小.④与国内外其他区域相比,嵊泗海域表层沉积物中w(∑14PAHs)处于较低污染水平,尚不足以对当地渔业生态环境造成负面影响,但作为我国重要"蓝色粮仓",仍应加强其陆源排放监管.   相似文献   

7.
通过测定长江口滨岸9个典型采样点上覆水与表层沉积物样品中的多环芳烃(PAHs)污染水平,分析其组成、时空分布特征及其影响因素,并进行了生态风险评价.结果显示,枯季上覆水中PAHs浓度高于洪季,平均浓度分别为1 988 ng/L和1 727ng/L;表层沉积物中的PAHs也为枯季高于洪季,平均浓度分别为1 154 ng/g和605 ng/g;Phe是水和沉积物中PAH的主要成分.温度是控制上覆水中PAHs季节性差异的主要因素,而有机碳(OC)与碳黑(SC)则控制着沉积物中PAHs的富集;长江口滨岸复杂的水动力条件与各种人类活动产生的污染物输入影响了PAHs的空间分布,在一定程度上也导致了河口滨岸PAHs来源的复杂性.生态风险评价结果显示,长江口滨岸水-沉积物间的PAHs在一定程度上可能对该区生物造成潜在不利影响.其中,上覆水中个别PAH化合物的浓度水平已达到欧美等国生态毒理评价标准或超过了美国EPA水质标准,BaP浓度超过了我国地表水环境质量标准的规定浓度;表层沉积物中部分PAH化合物的含量超过了ER-L值和ISQV-L值.  相似文献   

8.
研究了白洋淀表层沉积物中US EPA 16种优先控制的多环芳烃(PAHs)的分布特征和污染来源,其w(PAHs)为101.3~1 494.8 ng/g (平均值为353.0 ng/g),与国内其他的湖泊和河流相比,整体处于中等污染水平. 安州采样点沉积物中w(PAHs)最高,污染最严重;其次为小田庄、烧车淀、王家寨;污染较轻的采样点为枣林庄、光淀、圈头和端村. 在16种多环芳烃单体中,菲、荧蒽、芘、苯并[b]荧蒽所占比例较大. w(荧蒽)/w(芘)和w(菲)/w(蒽)2个比值显示, 白洋淀沉积物中多环芳烃的含量和分布受石化材料燃料、煤炭及薪柴燃烧影响较大. 风险评价表明,安州采样点表层沉积物对生物存在潜在危害,而其他采样点沉积物潜在风险处于较低水平.   相似文献   

9.
昌盛  白云松  涂响  付青  张坤锋  潘杨  王山军  杨光  汪星 《环境科学》2022,43(12):5534-5546
采用气相色谱-质谱法(GC-MS)测定了北江中上游流域地表水和沉积物样品中多环芳烃(PAHs)和多氯联苯(PCBs)类污染物的含量,分析了PAHs和PCBs的污染水平和空间分布,并评估了污染物的健康风险和生态风险.结果表明,16种PAHs单体在所有水样和沉积物样品中均被检出,检出范围分别为41.82~443.04 ng·L-1和59.58~635.73 ng·g-1,北江中上游PAHs的污染水平为中、轻度.水中PAHs以二环芳烃和三环芳烃为主,沉积物中以三环芳烃和四环芳烃为主.在水样中检出了17种PCBs,浓度范围0.81~287.50 ng·L-1,以六氯联苯和七氯联苯为主;沉积物中检出了8种PCBs,含量范围0.13~3.96 ng·g-1,以五氯联苯和七氯联苯为主.整个调查区域内地表水中PAHs和PCBs的终生致癌风险指数小于10-4,处于中、低水平;非致癌风险指数均小于1,不存在非致癌风险.采用风险商值(RQ)法对地表水中污染物进行生态风险评价,研究区域内地表水中PAHs和PCBs生态风险总体处于中低风险水平,个别点位存在重度风险的污染物单体,值得引起重视.采用沉积物质量基准法(SQGs)对沉积物中污染物进行生态风险评估,沉积物中PAHs和PCBs均处于较低的生态风险水平.  相似文献   

10.
对胶州湾大沽河河口18个站点处表层沉积物中多环芳烃的含量及其分布特征进行研究,并对其来源进行解析以及潜在风险展开评价。研究表明,大沽河河口表层沉积物中所测得的16种优先控制的多环芳烃总量为21.93×10-9~634.64×10-9,平均含量为239.41×10-9,根据沉积物中PAHs污染等级划分,大沽河河口PAHs污染状况属于中度污染,且7月份PAHs含量高于10月份。所有站点中16种PAHs平均含量最高的前三位分别为芴(58.10×10-9)、荧蒽(28.71×10-9)、芘(23.69×10-9),含量最低的为苊(0.65×10-9)。同时与国内外多个海湾河口表层沉积物中多环芳烃污染状况比较,大沽河河口表层沉积物中多环芳烃污染状况处于中等水平,应引起注意。运用特征比值法及主成分分析法对研究区多环芳烃来源进行解析,显示大沽河河口表层沉积物中多环芳烃来源主要为机动车尾气排放及化石燃料等燃烧而产生的石油燃烧源及原油等直接泄漏导致的石油源。采用效应区间低、中值法(ERL/ERM)对大沽河河口表层沉积物中的多环芳烃进行生态风险评价,仅个别站点芴含量超出效应区间低值(ERL),其余站点PAHs含量均在ERL值以下,对生态环境潜在负面效应很小。根据苯并(a)芘的等效致癌毒性(BEQ)评价发现大沽河河口表层沉积物中PAHs对人体健康不存在威胁。  相似文献   

11.
长江河口表层沉积物中PAHs的生态风险评价   总被引:8,自引:4,他引:4  
2005年11月26—29日对长江河口部分表层沉积物中多环芳烃类化合物(PAHs)的污染现状进行了调查和研究,分析了其中16种PAHs单体含量. 结果表明,长江河口表层沉积物中属于美国优先控制的16种PAHs共检出15种,仅萘未被检出,w(PAHs)为355.72~2 480.85 ng/g,平均值为1 040.29 ng/g. 表层沉积物中以4环和5~6环PAHs为主,二者之和占w(PAHs)的80%以上. 长江河口表层沉积物中PAHs污染主要来源于矿物燃料的高温燃烧,但部分区域也不排除石油源输入的可能性. 与沉积物风险评估值相比,严重的生态风险在长江河口表层沉积物中不存在,然而排污口附近沉积物存在一定的生态风险.   相似文献   

12.
北江表层沉积物中多环芳烃的分布与风险评价   总被引:13,自引:5,他引:8  
许静  任明忠  杜国勇  张素坤  许振成 《环境科学》2009,30(11):3269-3275
采用GC/MS定量检出北江干流表层沉积物中16种优控PAHs的总量范围在38.2~6 470 ng.g-1(干重)之间,平均值为1 071 ng.g-1,在珠江水系河流中属中等污染水平,干流沉积物中PAHs含量分布明显受点源排放的影响,含量最高的站位是韶冶排放口和沙口镇,∑PAHs含量分别为6 470 ng.g-1和4 470 ng.g-1,可能与当地的冶炼与矿业相关行业的PAHs输入有关.利用沉积物质量基准法(SQGs)、沉积物质量标准法和污染因子法分别对北江沉积物中多环芳烃的风险评价表明,在30个采样站位中有17个站位,即半数以上采样站位负面生物毒性效应会偶尔发生,风险主要来源于低环的多环芳烃;与背景区相比,20个采样站位的污染程度达到非常高的水平,所在区域多环芳烃污染状况应引起相关部门的关注;韶关冶炼厂排放口和沙口镇2个采样站位∑PAHs含量介于PEL和FEL之间,对水生生物毒性效应较高.未来应重点研究高风险区域底栖生物的受损状况、污染物来源与途径,以及污染控制对策.  相似文献   

13.
对淀山湖湖体6个站位表层沉积物中多环芳烃(PAHs)进行了季节测定,结果表明,16种美国EPA优先控制的PAHs均有检出,PAHs总含量(干重)波动范围54.6~1331.2ng/g,均值373.4ng/g.与国内外大多数湖泊相比,淀山湖沉积物中PAHs含量水平属中等偏下.总含量季节变化大体为冬季 > 春季 > 秋季 > 夏季.另对出入湖口河流6个站位表层沉积物中PAHs含量测定,表现为入湖口 > 出湖口 > 湖体,季节变化特征与湖体相一致.PAHs环数所占比重为4环 > 5~6环 > 2~3环,采用特征比值法进行源解析,其主要来源是煤炭和生物质的不完全燃烧,主因子分析显示贡献率为80.22%.基于沉积物质量基准法(SQGs),提出一种PAHs风险量化评价新方法--风险度指数法(RIM),用此方法风险评价表明,部分单体(Acy、Ace、Ant和BaA)风险度指数RI为3.09~3.29,属中等风险水平,大多数PAHs单体风险度指数RI为0.79~2.73,相对处于中低风险水平,总体PAHs风险度指数TRI为2.64,污染状况处于中低风险水平.淀山湖作为上海市一个重要水源地,PAHs污染的潜在风险仍不可忽视.  相似文献   

14.
为探究北江中上游流域的阻燃剂污染状况和风险水平,采用气相色谱-串联质谱(GC-MS/MS)法测定了34个地表水样品和8个沉积物样品中31种阻燃剂的浓度,包括多溴联苯醚(PBDEs)、六溴环十二烷(HBCD)、四溴双酚A (TBBPA)这3种溴代阻燃剂和28种有机磷阻燃剂(OPFRs).采用风险熵法评估了水体中阻燃剂的生态风险,并结合日饮用剂量评估了健康风险.结果表明:(1)地表水中PBDEs和HBCD浓度范围分别为4.78~625.52、225.43~2 209.18 ng/L,未检出TBBPA;沉积物中PBDEs、HBCD和TBPPA含量范围分别为ND~11.82、121.13~395.86和ND~3.30 ng/g.(2)地表水中OPFRs浓度范围为85.80~992.82 ng/L,浓度最高的3种单体分别为TCEP、TPhP和TDCIPP;沉积物中OPFRs含量范围为102.19~748.17 ng/g,含量最高的3种单体分别为TEHP、EHDPP和TCPP.(3)对于地表水中已知毒性参数和健康数据的阻燃剂污染物,其生态风险总体处于中低水平,但BDE-100呈现出高风险,TTP呈...  相似文献   

15.
松花湖是吉林省面积最大的湖泊和重要水源地,具有防洪排涝、灌溉供水、航运旅游等重要功能.为探究松花湖中PAHs(多环芳烃)和PAEs(邻苯二甲酸酯)的主要污染来源及生物毒性风险,于2017年7月采集松花湖21个表层沉积物样品,采用GC-MS测试16种US EPA(美国环境保护局)优先控制PAHs和6种PAEs的质量分数,并通过统计学方法对调查结果进行分析.结果表明:①松花湖沉积物中w(∑16PAHs)范围为23.1~554.8 ng/g,平均值和中位值分别为172.9和123.2 ng/g,w(∑16PAHs)高值分布在漂河镇和丰满乡附近湖区,主要来源于石油燃烧污染,贡献率为57.9%,其次为煤及生物质燃烧污染、石油泄露污染,贡献率分别为21.1%、21.0%.②松花湖沉积物中w(∑6PAEs)范围为33.7~2 062.3 ng/g,平均值和中位值分别为240.4和72.7 ng/g,主要成分为DBP(邻苯二甲酸二正丁酯)和DEHP(邻酞酸二辛酯),w(∑6PAEs)高值分布在旺起镇附近湖区,其来源主要与城镇生活污染输入有关.③松花湖沉积物中PAHs、PAEs污染生态风险较低,只有部分采样点存在低度潜在生态风险,但旺起镇附近湖区沉积物中的w(DBP)已经临近ERL(效应区间低值),需加以关注.研究显示,松花湖PAHs、PAEs污染程度较低,为加强松花湖饮用水源地保护,应着重加强交通燃油污染源的风险防控,同时在乡镇附近湖区应加强燃煤和生活污染源的监管力度.   相似文献   

16.
为探讨农村居民区沟塘水质对周边浅层地下水的影响,在河南省某县选择典型沟塘,分别在枯水期和丰水期采集沟塘水和周边浅层地下水样品,采用高效液相色谱检测16种多环芳烃(PAHs)的含量,分别描述并比较枯丰水期PAHs的污染特征及其生态与健康风险.结果表明,枯水期沟塘水中BaP含量、∑PAHs、TEQ(BaP)含量和致癌性PAHs占比分别为0.911ng/L、29.3ng/L、1.64ng/L和28.1%,均低于丰水期;浅层地下水中各指标分别为5.37ng/L、291ng/L、12.5ng/L和25.9%,高于丰水期.枯丰水期沟塘水和浅层地下水中PAHs均主要源于生物质和煤炭燃烧.浅层地下水PAHs的含量与沟塘水具有关联性,即距离沟塘越近,PAHs含量越高,枯水期的关联性低于丰水期.饮用浅层地下水致PAHs暴露的累积非致癌风险HQ为2.21x10-3;累积致癌风险R为1.56x10-6,72.0%成人R大于1x10-6,枯水期BaA、BbF和InP对成人致癌风险的贡献分别为72.1%、9.10%和4.80%.枯水期沟塘水PAHs总量为低等生态风险,丰水期为中等风险,不同沟塘其生态风险不同.纳污的C5沟塘水丰水期PAHs为高生态风险水平,BaA的贡献最大(占40.7%);纳污和养殖的A2枯水期和C3沟塘水丰水期PAHs为中等风险2水平.综上,沟塘水PAHs与周边浅层地下水具有关联性,枯水期沟塘水PAHs总量具有低生态风险,饮用周边浅层地下水的致癌风险高于1x10-6.  相似文献   

17.
鄱阳湖区PAHs的多介质迁移和归趋模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
为分析鄱阳湖区PAHs(多环芳烃)的多介质迁移和归趋行为,以可获取模型验证数据的BaP(苯并芘)、BaA(苯并蒽)、Chr()、Pyr(芘)、Fla(荧蒽)、Phe(菲)6种典型PAHs为研究对象,采用逸度模型Level Ⅲ,预测和模拟鄱阳湖区环境多介质中PAHs的分布和归趋状况. 结果表明:鄱阳湖区水相中ρ(BaP)、ρ(BaA)、ρ(Chr)、ρ(Pyr)、ρ(Fla)、ρ(Phe)的计算值分别为0.043 3、0.050 9、0.021 4、0.149 0、0.122 0、0.295 0 μg/L,与实测值基本一致. 气相、土壤相及沉积物相中6种PAHs的计算值与实测值吻合较好,模型可靠. 土壤相和沉积物相中PAHs残留量(以n计)占该区总残留量的92.6%,远高于气相和水相. PAHs在鄱阳湖区多介质中的相间迁移通量以气相→土相、水相→沉积物相、沉积物相→水相为主. 鄱阳湖区各介质中高环PAHs主要源于外来污水和外来废气输入,外来污水输入量(以n计)和外来废气输入量分别占59.4%和33.6%. 中环和低环PAHs主要源于当地的废气排放和外来污水输入. 土壤相和沉积物相是鄱阳湖区PAHs主要的汇,由土壤和沉积物的内源释放而可能引起的二次污染应引起重视.   相似文献   

18.
针对我国长江典型江段丰、平、枯不同时期的地表水,采用了固相萃取—气相色谱质谱联用(GC-MS)的分析技术,调查了16种优先控制多环芳烃(PAHs)的污染状况。研究了长江干流PAHs的污染水平和分布特征,并在定量分析的基础上评估了长江干流PAHs的来源和生态风险。结果显示,Σ16PAHs浓度范围为2.22~1450.91ng/L,均值为107.04ng/L,其中,平水期武汉江段Σ16PAHs浓度最高,均值为1050.64ng/L,长江干流PAHs污染状况与近5a国内其他水体相比处于中等偏低水平。空间分布上长江典型江段地表水中Σ16PAHs从上游攀枝花江段到下游南京江段呈现出先上升后下降的趋势;时间分布上Σ16PAHs的变化趋势为平水期(187.78ng/L)>丰水期(73.30ng/L)>枯水期(38.02ng/L)。由同分异构比值法分析表明:在枯水期和平水期中,煤炭、生物质燃烧和石油源是长江干流PAHs的主要来源,而丰水期PAHs主要源于煤炭、生物质燃烧,其中南京江段PAHs的来源较为复杂。采用物种敏感性分布评估法对PAHs进行生态风险评估,结果显示长江典型江段地表水中PAHs尚未对水生生物造成显著的负面影响,与历史数据比对表明现阶段长江干流PAHs生态风险低于长江大保护政策实施前的生态风险。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号