首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 734 毫秒
1.
采用低温球磨技术制备了Mg-4%Ni-1%NiO储氢材料,主要研究低温球磨时间对材料形貌结构以及储氢性能的影响.采用扫描电子显微镜(SEM)和X射线衍射(XRD)分析材料的形貌和相组成,采用压力-组成-温度(P-C-T)设备研究材料的储氢性能.结果表明:分别经过2、4和7 h球磨后,材料的相组成没有发生明显改变,只有极少量的Mg2Ni合金相生成.随着球磨时间的延长,材料的平均粒度逐渐下降,作为催化剂的Ni、NiO相逐渐揉进基体内部.伴随着上述变化,材料的活化性能、吸氢性能逐渐提高,球磨到7 h后材料仅需活化1次即可达到最大吸放氢速率,初始吸氢温度降为60℃,在4.0 MPa初始氢压和200℃下吸氢量为6.4%(质量分数),60s即可完成饱和吸氢量的80%,10min内完成饱和吸氢量的90%;材料的放氢性能则在球磨4 h后已经基本保持不变,0.1MPa下初始放氢温度为310℃,在350℃、0.1MPa下材料可在500s内释放饱和储氢量的80%.  相似文献   

2.
采用镁粉和铝粉为原料,通过高能球磨方法制备了Mg17Al12纳米晶/非晶储氢合金,系统研究了球磨时间对合金微结构和储氢性能的影响.结果表明:球磨时间对Mg17Al12合金的微结构和储氢性能有显著影响,随着球磨时间t从10 h延长到100 h,合金发生从晶态(t≤50 h)到纳米晶态(t=70 h)再到非晶态(t=100 h)的结构转变;样品的平均颗粒尺寸随着球磨时间的增加先减小后增大;球磨时间为30、70和100 h后的Mg17Al12合金在350℃时的最大储氢量(氢的质量分数)分别为4.03%、4.27%和4.18%,而相同条件下铸态Mg17Al12合金的最大储氢量只有2.85%;球磨时间为70 h的Mg17Al12纳米晶合金在200、280和320℃的储氢量分别为1.07%、3.02%和4.07%;球磨时间为100 h的Mg17Al12非晶合金在200℃时30 min内的吸氢量(氢的质量分数)可达到2.84%,分别为相同条件下纳米晶合金和铸态合金的2.7倍和5.1倍.  相似文献   

3.
采用"烧结-球磨"方法制备Mg0.92In0.05Zn0.03三元固溶体合金,减小了Mg的晶格常数.利用粉末X-射线衍射分析合金的相组成、微观结构和吸放氢过程的相转变,通过扫描电镜观察合金的微观形貌及相分布.采用体积法测定合金的等温吸放氢曲线(PCT)和动力学曲线,确定了合金的吸放氢反应焓变、熵变及氢化反应激活能.结果表明:Mg0.92In0.05Zn0.03三元固溶体具有良好的活化性能和动力学性能,脱氢反应焓降低至-68.6 kJ/mol H2.  相似文献   

4.
采用高能球磨法制备了Mg x%Mm(NiCoMnAl)_5(x=10、20、30和40)纳米晶和非晶混合结构的复合储氢材料,并对其结构和吸放氢性能进行了研究.XRD结果表明,Mg与Mm(NiCoMnAl)_5球磨200h后有Mg_2Ni和La_2Mg_(17)相生成.吸氢动力学研究发现,在423K和3.4 MPa下,随着x增大,吸氢速率和最大吸氢量都出现了先增大后减小的趋势.当x=20时,复合材料的吸氢性能达到最佳,其最大吸氢速率达到0.45%/s,50s内即可吸氢3.6%.热重分析结果表明,Mg的氢化物相放氢温度降低到259℃(x=40).  相似文献   

5.
采用高能机械球磨法制备了Mg 10%TiFe1-xCrx(x=0,0.3)复相储氢合金,对比研究了球磨复相合金和球磨纯镁的微结构与储氢性能.研究结果表明:在纯Mg中添加质量分数为10%的TiFe1-xCrx(x=0,0.3)进行复合球磨,可以明显提高其吸放氢性能;在相同温度条件下,x=0.3的含铬复相合金具有最佳的吸放氢性能,其中在613 K下的吸氢容量(氢的质量分数)为7.14%,放氢容量(氢的质量分数)为6.91%;在493~573 K的较低温度下,含铬复相合金表现出更好的放氢动力学性能.通过XRD、SEM、EDS分析研究表明,TiFe1-xCrx(x=0,0.3)合金粉以细小颗粒的形式分散镶嵌在镁粉基体上成为催化活性点,改善了体系的吸放氢性能.  相似文献   

6.
本文用共沉淀还原扩散法制备了新的镧系吸氢合金LaNi_4Fe_(0.5)Cu_(0.5)对其进行结构表征,吸氢性能测试和表面研究.结果表明:该合金的晶体结构属六方晶系.空间群P6/mmm,晶体学参数为a=5.043A.C=4.009A;有优良的吸放氢性质,易活化,吸氢容量高(H/La接近6);合金吸放氢导致粉化,活化过程产生许多微观裂隙,有利于吸氢。  相似文献   

7.
为了提高NaAlH_4的吸放氢动力学性能,采用球磨烧结两步法制备了非晶态TiB_2和C复合催化剂(简写为TiB_2@C),并系统地研究了TiB_2@C对NaAlH_4合成和储氢性能的影响。研究结果表明,以NaH和Al为原料,添加质量分数为6%的TiB_2@C作为复合催化剂,在室温、5 MPa氢压下进行球磨成功制备出NaAlH_4。相对于球磨后的纯NaAlH_4,复合体系的起始放氢温度、三步放氢过程的峰值温度和前两步放氢过程的表观活化能均大幅降低。吸放氢测试结果显示,TiB_2@C能够有效地改善NaAlH_4的吸放氢动力学性能,且复合体系在10次吸氢循环过程中表现出优异的循环稳定性。这一系列性能的改善主要源于TiB_2@C催化剂中TiB_2和C的协同催化效应。  相似文献   

8.
为改善铝氢化钠(NaAlH_4)的储氢性能,以过渡元素和稀土元素X单质(X=Sc,Ce,Pr,Sm)、NaH和Al为反应物,基于预球磨和加氢球磨两步制备方法,原位合成被掺杂的NaAlH_4。XRD分析结果显示NaAlH_4合成效果很好,放氢也很彻底。吸放氢性能测试显示,添加Sc情况下首次放氢量最高(达5.2wt%,达到理论容量的99%),并且有最好的吸氢动力学。添加稀土单质时的容量保持率都明显高于添加Sc的情况,其中添加Sm情况最好;添加Ce情况下起始放氢温度(90℃)最低,吸氢动力学是3种稀土元素中最好的,但其最大放氢量最低。这4种单质没有一种能在所有性能都位居最优。基于本文所采用低剂量单质掺杂剂原位合成的NaAlH_4表现出良好的储氢性能,主要是因为球磨过程中单质添加剂能与基体产生反应,原位产物能与基体形成紧密耦合,甚至从体内激活基体,从而获得良好的催化效果。  相似文献   

9.
系统研究了机械球磨改性处理时间(t=0,1,2,4,8 h)对Ti9.6Cr11V75.4Fe4合金相结构和储氢性能的影响.XRD及扫描电镜分析表明,Ti9.6Cr11V75.4Fe4合金在球磨前后均为体心立方结构的固溶体单相,随着球磨时间的增加,合金的晶胞体积略微减小,合金颗粒逐渐细化并发生团聚.储氢性能测试表明,球磨改性处理能有效地改善合金的活化性能,随着球磨时间的增加,合金的室温可逆有效储氢量先增加后降低.其中,当球磨时间为2 h时,合金具有最佳的综合储氢性能,其室温最大吸氢量(质量分数)为3.7%,可逆有效储氢量(质量分数)为2.23%.  相似文献   

10.
以NaBH4,ZnCl2和LiNH2为原料,机械球磨法制备Zn(BH4)2-LiNH2复合储氢材料.采用X-射线衍射(XRD)、红外光谱(FTIR)、差示扫描量热-热重分析(DSC-TGA)和扫描电镜(SEM)和吸放氢测试装置等方法表征Zn(BH4)2-LiNH2复合储氢材料的物相、键合特征、热稳定性、储氢性能和形貌.结果表明:Zn(BH4)2-LiNH2复合体系在116℃和193℃时分别发生熔化和热分解.随着放氢温度的升高,体系在150℃时放氢气量为0.015 mol/g.而在200℃时,材料的放氢量增加至0.018 mol/g,提高放氢温度对该体系的放氢动力学影响有限.循环吸氢实验发现(BH4)2-LiNH2复合体系在150℃,0.1 MPa H2条件下不能可逆吸氢.  相似文献   

11.
采用感应熔炼结合粉末烧结两步法制备了La_(0.7)Mg_(0.3-x)Ca_xNi_(2.5)Co_(0.5)(x=0~0.15)储氢合金,并对合金的放电容量衰退机理进行了研究.研究结果显示随着Ca含量的增加,合金的相结构没有发生明显变化,只是晶胞参数逐渐增大,即Ca主要替代了超晶格结构AB2结构单元中的Mg,但在AB5结构单元中少量的Ca恰恰对合金的放电容量产生了重要的影响.Ca在AB2和AB5两种结构单元中的存在会降低储氢过程中晶胞内部的膨胀应力,Ca的溶解能够抑制Mg的腐蚀,生成微溶于水的腐蚀产物,并提高了合金表面具有催化活性的Ni含量,改善了合金的循环寿命.较高的Ca含量会严重破坏合金的相结构,生成过量的腐蚀产物因不能完全溶于水而在合金表面形成包覆层,阻碍了电极反应,造成合金循环过程中放电容量的急剧下降.  相似文献   

12.
采用机械合金化方法制备Mg-50wt.%Ti1-xCx(x=0.1,0.2,0.3,0.4)贮氢合金.x-射线衍射(XRD)分析结果表明,合金主要由Mg、Ti、c以及二元合金相Ti2C0.06和Mg2C3组成,随着球磨时间增加,合金的非晶化程度提高.压强-成分-温度(Pcr)测试结果显示,Mg-50wt.%Ti1-xC(x=0.1,0.2,0.3,0.4)合金的贮氢量分别为2.96、2.95、2.76、2.6wt.%;随着碳含量的增加,样品吸氢量逐渐减少,放氢温度和平台压也随之下降;适当增加球磨时间可降低吸放氢温度.  相似文献   

13.
在氩气保护下,采用悬浮熔炼法制备La0.7Mg0.3Ni3.4(Al0.3Co0.7)x(x=0,0.2,0.4,0.6)储氢合金,用X射线衍射仪测试相组成,并用MDI Jade 5.0软件分析相组成和晶胞参数,用开口三电极法测试电极电化学性能。结果表明,合金相主要由LaNi5、LaMg2Ni9、La2Ni7和LaNi2.28相组成,随着合金中Al和Co含量的增加,合金放氢平台压下降,最大吸氢量为1.43%(x=0),合金电极最大放电容量Cmax为381mA.h.g-1(x=0),合金电极100个充放循环后的容量保持率S100从53.0%(x=0)增加到57.1%(x=0.3),循环稳定性增强。当x=0.1时,合金电极的电化学动力学性能较好。  相似文献   

14.
The alloying element component is very crucial in improving the hydrogen storage performance of amorphous alloys.In this work,quaternary amorphous Mg_(70-x)Ce_(10)Ni_(20)Cu_x(x=3,7.5,10)alloys were prepared by meltspinning and the effect of Cu on hydrogenation and dehydrogenation were investigated in comparison with the Mg_(70-x)Ce_(10)Ni_(20)amorphous alloys.The initial hydrogenation kinetics of amorphous Mg_(70-x)Ce_(10)Ni_(20)Cu_x(x=0,3,7.5,10)was improved with the increase of Cu content according to the kinetics measured at a temperature below crystallization temperature.As hydrogen is absorbed,an amorphous-amorphous transition occurred,and relatively high Cu content would lead to phase separation in the hydrogenation process.Amorphous phase have much higher crystallization temperature after it absorbs hydrogen and the addition of Cu could increase the crystallization activation energy of amorphous hydrides.In addition,the increase of Cu content could reduce the dehydrogenation temperature of amorphous hydrides,which gives a significant indication for future improving research of the hydrogen desorption performance of Mg based amorphous hydrides.  相似文献   

15.
利用机械合金化方法制成了MgNi,Mg0.7Ti0.3Ni和Mg0.7Ti0.225 La0.075Ni非晶态镁基合金,XRD表明球磨100 h后已形成非晶;电化学容量测试表明:在此实验条件下添加Ti,La元素改善了电极的循环稳定性能.其中,La的取代提高了合金的抗腐蚀性能和合金的电化学氧化还原反应的可逆性能,进而提高...  相似文献   

16.
用快淬技术制备Mg2-xLaxNi(x=0,0.2,0.4,0.6)贮氢合金,用XRD,SEM和HRTEM分析合金的微观组织结构;测试合金的气态及电化学贮氢动力学。结果表明:快淬二元Mg2Ni合金具有典型的纳米晶结构,而快淬La替代合金明显地具有非晶结构,La替代Mg提高Mg2Ni型合金的非晶形成能力。La替代Mg明显地改变Mg2Ni型合金的相组成,当x=0.4时,合金的主相改变为(La,Mg)Ni3+LaMg3。快淬及La替代明显影响合金的气态及电化学贮氢动力学,La替代使合金的吸氢动力学先降低后增加,但使合金的气态脱氢及电化学贮氢动力学先增加后降低。快淬对合金气态及电化学贮氢动力学的影响与合金的成分相关,对于La0.4合金,合金的气态吸氢动力学随淬速的增加先增加后减小,其放氢动力学随淬速的增加而增加。  相似文献   

17.
电弧等离子体法制备Mg-Ni储氢合金粉体   总被引:1,自引:0,他引:1  
采用Mg粉、Ni粉混合,经球磨、烧结等不同工艺制备电弧阳极材料,通过直流电弧等离子体法制备了Mg-Ni储氢合金超细粉。用XRD、TEM、ICP分析手段研究了粉体的相组成、形貌、成分等。物相分析显示,Mg粉、Ni粉混合烧结后基本都转化为Mg2Ni相;经直流电弧等离子体后,Mg相增加,同时生成了MgNi2相,证明在电弧作用时母相Mg2Ni发生了分解生成Mg和Ni相,Mg与Ni再反应生成Mg2Ni和MgNi2。成分分析显示,烧结形成Mg2Ni后再经电弧作用更利于Ni的析出。TEM结果显示:Mg颗粒形貌近似六方形,颗粒大小为100~600nm;Mg2Ni颗粒附着在Mg大颗粒的表面,大小在10~50nm之间。纳米Mg2Ni颗粒附着在超细Mg粉上的这种结构将有助于改善Mg的吸放氢性能。  相似文献   

18.
Microstructure, hydrogen storage and electrochemical performances of Co-added La_(0.75)Mg_(0.25)Ni_(3.5_x)Co_x(x = 0,0.2, 0.5 at%) alloys are studied. XRD and rietveld refinement results suggest that the samples are mainly composed of(LaMg)Ni_3,(LaMg)_2Ni_7 and LaNi_5 phases, Co substitution for Ni changes the phase abundance,but not the phase composition. With the rising of Co content, the amount of(LaMg)_2 Ni_7 phase decreases, but the amount of LaNi_5 phase increases, while the amount of(LaMg)Ni_3 phase firstly increases and then decreases.The alloys reversibly absorb and desorb hydrogen at 298 K smoothly. When Co content is 0.2 at%, the hydrogen absorption capacity reaches the maximum value of 1.14 H/M, and the absorption capacities reach 1.09 H/M and 1.03 H/M in the first minute at 298 K and 323 K, respectively. Electrochemical performance measurement results show that La_(0.75)Mg_(0.25)Ni_(3.5-x)Co_x alloys are completely activated within 2 cycles, and the cyclic stability of La_(0.75)Mg_(0.25)Ni_(3.3)Co_(0.2) alloy approaches 63.7% after 100 charge/discharge cycles, which is higher than that(S_(100) = 60%) of La_(0.75)Mg_(0.25)Ni_(3.0)Co_(0.5) alloy. Thus, the La_(0.75)Mg_(0.25)Ni_(3.3)Co_(0.2) alloy exhibits optimum comprehensive properties of hydrogen storage and electrochemistry.  相似文献   

19.
系统研究了La3-xYxMgNi14(x=0,1.0,1.5,2.0)贮氢合金的相结构和电化学性能.结构分析表明,合金均由Gd2Co7和Ce2Ni7型结构相组成.随Y含量值x的增加,Gd2Co7型相的丰度增加,Ce2Ni7型相的丰度减少.合金各相的晶胞参数(a,c)和晶胞体积(V)均随x的增加而线性减小.电化学研究表明,随着Y含量的增加,合金电极最大放电容量减小,活化性能显著降低.合金随x的增加,HRD值减小与合金电极电催化活性及氢在合金相中的扩散速率的减小有关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号