首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multimedia—MAC Protocol: Its Performance Analysis and Applications for WDM Networks The design of the Medium Access Control (MAC) protocol is the most crucial aspect for high-speed and high-performance Local and Metropolitan Area Networks (LANs/MAN's) since the decisions made at this level determines the major functional characteristics of these networks. Most of the MAC protocols proposed in literature are not suitable for multimedia applications since they have been designed with one generic traffic type in mind. As a result, they perform quite well for the traffic types they have been designed for, but poorly for other traffic streams with different characteristics. In this paper, we propose an integrated MAC protocol (herein termed as Multimedia Medium Access Control protocol (Multimedia -MAC) which integrates different MAC protocols into a hybrid protocol in a shared medium network to efficiently accommodate various types of multimedia traffic streams with different characteristics and QoS demands, namely, a constant-bit-rate (CBR) traffic, bursty traffic (say, variable-bit-rate (VBR) traffic) and emergency messages (say, control messages). We have developed a mathematical framework for the analysis and performance evaluation of our Multimedia-MAC protocol which involves a queueing system with vacation. We have applied our Multimedia-MAC design approach to a wavelength division multiplexing (WDM) network and evaluated its performance under various traffic conditions.  相似文献   

2.
The design of the medium-access control (MAC) protocol is the most crucial aspect for high-speed and high-performance local and metropolitan area networks, since the decisions made at this level determine the major functional characteristics of these networks. Most of the MAC protocols proposed in the literature are not suitable for multimedia applications, since they have been designed with one generic traffic type in mind. As a result, they perform quite well for the traffic types they have been designed for, but poorly for other traffic streams with different characteristics. In this paper, we propose an integrated MAC protocol called the Multimedia-MAC (M-MAC), which integrates different MAC protocols into a hybrid protocol in a shared-medium network to efficiently accommodate various types of multimedia traffic streams with different characteristics and quality-of-service demands, namely, a constant-bit-rate traffic, bursty traffic (say, variable-bit-rate traffic), and emergency messages (say, control messages). We have developed a mathematical framework for the analysis and performance evaluation of our M-MAC protocol, which involves a queueing system with vacation. We have applied our M-MAC design approach to a wavelength-division multiplexing network, and evaluated its performance under various traffic conditions.  相似文献   

3.
All-optical WDM multi-rings with differentiated QoS   总被引:1,自引:0,他引:1  
This article considers all-optical WDM networks based on a slotted multichannel ring topology, where nodes are equipped with one fixed-wavelength receiver and one wavelength-tunable transmitter; and shows how to design very effective MAC protocols that provide packet-mode transport to multiple information flows with different QoS requirements. As an example, we describe SR3, a collision-free slotted MAC protocol which combines a packet scheduling strategy (called SRR), a fairness control algorithm (called MMR); and a reservation mechanism. SRR achieves an efficient exploitation of the available bandwidth, MMR guarantees fair throughput access to each node, and SR3, by permitting slot reservations, leads to tighter control on access delays, and can thus effectively support traffic classes with different QoS requirements  相似文献   

4.
MLAP: a MAC level access protocol for the HFC 802.14 network   总被引:3,自引:0,他引:3  
Interactive residential broadband/multimedia services are expected to be the next main event in the cyberspace experience. The large excess bandwidth (well over 300 MHz) available in today's cable TV (CATV) hybrid fiber/coaxial (HFC) plants is an ideal candidate to provide the underlying communications infrastructure for interactive digital services to the home; cable operators that have not yet upgraded their all-coaxial plants to HFC are quickly moving in this direction. MLAP is a flexible ATM-friendly MAC protocol that is capable of supporting various types of traffic with diverse quality-of-service requirements. We introduce a very versatile MAC protocol for the HFC 802.14 network. MLAP can provide integrated broadband services to the home, internetwork easily with ATM wide area networks, support QoS constraints for various types of traffic, and operate over a variety of physical layer protocols. Our presentation is only an extended summary of our medium-sharing protocol proposal to the IEEE 802.14 WG. We consider only error-free system operation. MLAP provides for the use of timers for the recovery of error situations in the network. MLAP is also supported by a management suite of protocols for management of the overall system  相似文献   

5.
QoS support for integrated services over CATV   总被引:1,自引:0,他引:1  
Cable TV has emerged as a promising access network infrastructure for the delivery of voice, video, and high-speed data traffic. A central issue in the design of protocols for CATV networks is to support different levels of QoS for diverse user applications. While CATV service providers and equipment have standardized, in the so-called MCNS protocol, the basic network architecture and interfaces, issues in the MAC layer for QoS support are likely to be left for differentiation in vendor products. This article first presents an overview of the basic CATV network architectural assumptions and the set of QoS requirements for supporting integrated services over CATV. It then discusses a MAC layer scheduling protocol that can efficiently multiplex constant bit rate traffic, such as voice over IP with guaranteed delay bound, and best-effort traffic, such as data services with minimum bit rate guarantee, while achieving fairness on any excess available bandwidth. The performance of this algorithm is illustrated by simulation results using Opnet. We also discuss a dynamic polling mechanism that enhances the link utilization while preserving delay bounds for latency-critical traffic  相似文献   

6.
To enable multimedia real-time applications over next-generation wireless code-division multiple access (CDMA) packet-switching networks, previous efforts show a proper scheduling policy is the key to provide delay-guaranteed access services to various traffic types with different bit error rate (BER) requirements. Considering the support of the prevailing Internet protocol (IP) with variable-length packets in future mobile networks, we develop a mathematically delay-optimal medium access control (MAC) protocol over multicode CDMA (MC-CDMA) environments under the continuous-time assumption. From our investigations, we suggest that a good MAC protocol should be designed by using a proper single-server scheduling policy to guarantee packet-delay, and controlling the maximal number of simultaneous spreading-code transmissions to maintain the required BER. We further evaluate the performance of some MC-CDMA MAC protocols supporting QoS on BER and packet-delay, and show that MAC schemes conforming to our design rules give better performance on packet-delay when maintaining acceptable BER of various traffic types.  相似文献   

7.
QoS-aware routing based on bandwidth estimation for mobile ad hoc networks   总被引:17,自引:0,他引:17  
Routing protocols for mobile ad hoc networks (MANETs) have been explored extensively in recent years. Much of this work is targeted at finding a feasible route from a source to a destination without considering current network traffic or application requirements. Therefore, the network may easily become overloaded with too much traffic and the application has no way to improve its performance under a given network traffic condition. While this may be acceptable for data transfer, many real-time applications require quality-of-service (QoS) support from the network. We believe that such QoS support can be achieved by either finding a route to satisfy the application requirements or offering network feedback to the application when the requirements cannot be met. We propose a QoS-aware routing protocol that incorporates an admission control scheme and a feedback scheme to meet the QoS requirements of real-time applications. The novel part of this QoS-aware routing protocol is the use of the approximate bandwidth estimation to react to network traffic. Our approach implements these schemes by using two bandwidth estimation methods to find the residual bandwidth available at each node to support new streams. We simulate our QoS-aware routing protocol for nodes running the IEEE 802.11 medium access control. Results of our experiments show that the packet delivery ratio increases greatly, and packet delay and energy dissipation decrease significantly, while the overall end-to-end throughput is not impacted, compared with routing protocols that do not provide QoS support.  相似文献   

8.
Metropolitan area networks are currently undergoing an evolution aimed at more efficiently transport of data-oriented traffic. However, the incoming generation of metro networks is based on conventional technology, which prevents them scaling cost-effectively to ultrahigh capacities. We have developed a new architecture and set of protocols for the next generation of metro networks. The architecture, named HORNET (hybrid optoelectronic ring network), is a packet-over-wavelength-division multiplexing ring network that utilizes fast-tunable packet transmitters and wavelength routing to enable it to scale cost-effectively to ultrahigh capacities. A control-channel-based media access control (MAC) protocol enables the network nodes to share the bandwidth of the network while preventing collisions. The MAC protocol is designed to transport variable-sized packets and to provide fairness control to all network end users. The efficiency and the fairness of the MAC protocol is demonstrated with custom-designed simulations. The implementation of the MAC protocol and the survivability of the network have been demonstrated in a laboratory experimental testbed. The article summarizes the accomplishments of the HORNET project, including the design, analysis, and demonstration of a metro architecture and a set of protocols. The HORNET architecture is an excellent candidate for next-generation high-capacity metro networks.  相似文献   

9.
A well designed Medium Access Control (MAC) protocol for wireless networks should provide an efficient mechanism to share the limited bandwidth resources, and satisfy the diverse and usually contradictory Quality of Service (QoS) requirements of each traffic class. In this paper a new MAC protocol for next generation wireless communications is presented and investigated. The protocol uses a combined Packet Discard/Forward Error Correction scheme in order to efficiently integrate MPEG-4 videoconference packet traffic with voice, SMS data and web packet traffic over a noisy wireless channel of high capacity. Our scheme achieves high aggregate channel throughput in all cases of traffic load, while preserving the Quality of Service (QoS) requirements of each traffic type, and is shown to clearly outperform DPRMA, another efficient MAC protocol proposed in the literature for multimedia traffic integration over wireless networks. Dr. Polychronis Koutsakis was born in Hania, Greece, in 1974. He received his 5-year Diploma in Electrical Engineering in 1997 from the University of Patras, Greece and his MSc and Ph.D. degrees in Electronic and Computer Engineering in 1999 and 2002, respectively, from the Technical University of Crete, Greece. He was a Visiting Lecturer at the Electronic and Computer Engineering Department of the same University for three years (2003–2006). He is currently an Assistant Professor at the Electrical and Computer Engineering Department of McMaster University, Canada. His research interests focus on the design, modeling and performance evaluation of computer communication networks, and especially on the design and evaluation of multiple access schemes for multimedia integration over wireless networks, on call admission control and traffic policing schemes for both wireless and wired networks, on multiple access control protocols for mobile satellite networks, wireless sensor networks and powerline networks, and on traffic modeling. Dr. Koutsakis has authored more than 45 peer-reviewed papers in the above mentioned areas, has served as a Guest Editor for an issue of the ACM Mobile Computing and Communications Review, as a TPC member for conferences such as IEEE GLOBECOM, IEEE LCN and IEEE PerCom, will serve as Session Chair for the IEEE GLOBECOM 2006 Symposium on Satellite & Space Communications and serves as a reviewer for most of the major journal publications focused on his research field. Moisis Vafiadis was born in Elefsina, Greece, in 1980. He has recently completed his studies towards the Diploma in Electronic Engineering at the Technological Educational Institute of Crete, Greece. His research interests focus on wireless personal communication networks, and especially on the MAC layer and on the development and testing of wireless multimedia applications.  相似文献   

10.
In this article, we examine a candidate architecture for wavelength-division multiplexed passive optical networks (WDM-PONs) employing multiple stages of arrayed-waveguide gratings (AWGs). The network architecture provides efficient bandwidth utilization by using WDM for downstream transmission and by combining WDM with time-division multiple access (TDMA) for upstream transmission. In such WDM-PONs, collisions may occur among upstream data packets transmitted simultaneously from different optical networking units (ONUs) sharing the same wavelength. The proposed MAC protocol avoids such collisions using a request/permit-based multipoint control protocol, and employs a dynamic TDMA-based bandwidth allocation scheme for upstream traffic, called minimum-guaranteed maximum request first (MG-MRF), ensuring a reasonable fairness among the ONUs. The entire MAC protocol is simulated using OPNET and its performance is evaluated in terms of queuing delay and bandwidth utilization under uniform as well as non-uniform traffic distributions. The simulation results demonstrate that the proposed bandwidth allocation scheme (MG-MRF) is able to provide high bandwidth utilization with a moderately low delay in presence of non-uniform traffic demands from ONUs.  相似文献   

11.
Ethernet passive optical networks (EPONs) are designed to deliver services for numerous applications such as voice over Internet protocol, standard and high-definition video, video conferencing (interactive video), and data traffic. Various dynamic bandwidth allocation and intra-optical network unit (ONU) scheduling algorithms have been proposed to enable EPONs to deliver differentiated services for traffic with different quality of service (QoS) requirements. However, none of these protocols and schedulers can guarantee bandwidth for each class of service nor can they protect the QoS level required by admitted real-time traffic streams. In this paper, we propose the first framework for per-stream QoS protection in EPONs using a two-stage admission control (AC) system. The first stage enables the ONU to perform flow admission locally according to the bandwidth availability, and the second stage allows for global AC at the optical line terminal. Appropriate bandwidth allocation algorithms are presented as well. An event-driven simulation model is implemented to study the effectiveness of the proposed schemes in providing and protecting QoS.  相似文献   

12.
A frequency division duplex (FDD) wideband code division multiple access (CDMA) medium access control (MAC) protocol is developed for wireless wide area multimedia networks. In order to reach the maximum system capacity and guarantee the heterogeneous bit error rates (BERs) of multimedia traffic, a minimum-power allocation algorithm is first derived, where both multicode (MC) and orthogonal variable spreading factor (OVSF) transmissions are assumed. Based on the minimum-power allocation algorithm, a multimedia wideband CDMA generalized processor sharing (GPS) scheduling scheme is proposed. It provides fair queueing to multimedia traffic with different QoS constraints. It also takes into account the limited number of code channels for each user and the variable system capacity due to interference experienced by users in a CDMA network. To control the admission of real-time connections, a connection admission control (CAC) scheme is proposed, in which the effective bandwidth admission region is derived based on the minimum-power allocation algorithm. With the proposed resource management algorithms, the MAC protocol significantly increases system throughput, guarantees BER, and improves QoS metrics of multimedia traffic.  相似文献   

13.
A major challenge in the design of future generation high-speed networks is the provision of guaranteed quality-of-service (QoS) for a wide variety of multimedia applications. In this paper we investigate the problem of providing QoS guarantees to real-time variable length messages (e.g., IP packets) in wavelength division multiplexing (WDM) optical networks. In particular, we propose a systematic mechanism comprised of admission control, traffic regulation, and message scheduling that provide guaranteed performance service for real-time application streams made up of variable-length messages. We formulate an analytical model based on the theory of max-plus algebra to evaluate the deterministic bounded message delay in a WDM network environment using our proposed QoS guarantee mechanism to determine the "schedulability conditions" of multimedia application streams, We also conduct a series of discrete-event and trace-driven simulations to verify the accuracy of the analytical model. The simulation results demonstrate that the analytic delay bound we obtained for our WDM optical network is valid and accurate.  相似文献   

14.
Quality-of-service (QoS) signaling protocols for mobile ad hoc networks (MANETs) are highly vulnerable to attacks. In particular, a class of denial-of-service (DoS) attacks can severely cripple network performance with relatively little effort expended by the attacker. A distributed QoS signaling protocol that is resistant to a class of DoS attacks on signaling is proposed. The signaling protocol provides QoS for real-time traffic and employs mechanisms at the medium access control (MAC) layer, which serve to avoid potential attacks on network resource usage. The key MAC layer mechanisms that provide support for the QoS signaling scheme include sensing of available bandwidth, traffic policing, and rate monitoring, all of which are performed in a distributed manner by the mobile nodes. The proposed signaling scheme achieves a compromise between signaling protocols that require the maintenance of per-flow state and those that are completely stateless. The signaling scheme scales gracefully in terms of the number of nodes and/or traffic flows in the MANET. The authors analyze the security properties of the protocol and present simulation results to demonstrate its resistance to DoS attacks.  相似文献   

15.
Two major challenges pertaining to wireless asynchronous transfer mode (ATM) networks are the design of multiple access control (MAC), and dynamic bandwidth allocation. While the former draws more attention, the latter has been considered nontrivial and remains mostly unresolved. We propose a new intelligent multiple access control system (IMACS) which includes a versatile MAC scheme augmented with dynamic bandwidth allocation, for wireless ATM networks. IMACS supports four types of traffic-CBR, VBR, ABR, and signaling control (SCR). It aims to efficiently satisfy their diverse quality-of-service (QoS) requirements while retaining maximal network throughput. IMACS is composed of three components: multiple access controller (MACER), traffic estimator/predictor (TEP), and intelligent bandwidth allocator (IBA). MACER employs a hybrid-mode TDMA scheme, in which its contention access is based on a new dynamic-tree-splitting (DTS) collision resolution algorithm parameterized by an optimal splitting depth (SD). TEP performs periodic estimation and on-line prediction of ABR self-similar traffic characteristics based on wavelet analysis and a neural-fuzzy technique. IBA is responsible for static bandwidth allocation for CBR/VBR traffic following a closed-form formula. In cooperation with TEP, IBA governs dynamic bandwidth allocation for ABR/SCR traffic through determining the optimal SD. The optimal SDs under various traffic conditions are postulated via experimental results, and then off-line constructed using a back propagation neural network (BPNN), being used on-line by IBA. Consequently, with dynamic bandwidth allocation, IMACS offers various QoS guarantees and maximizes network throughput irrelevant to traffic variation  相似文献   

16.
This paper proposes a new medium access protocol (MAC) protocol for futurewireless multimedia personal communication systems, denoted hybrid andadaptive multiple access control (HAMAC) protocol. The HAMAC protocolintegrates fixed assignment TDMA protocol, reservation-based protocols, andcontention-based protocols into a single wireless network so as tosimultaneously and efficiently support various classes of traffic such asconstant-bit-rate (CBR), variable-bit-rate (VBR), and available-bit-rate (ABR)traffic. In particular, the HAMAC protocol uses a novel preservationslot technique to overcome the packet contention overhead in packetreservation multiple access (PRMA) like protocols, while keeping mostisochronous service features of TDMA protocols to serve voice and CBR trafficstreams. A preservation slot is a very short slot which is used torepresent a CBR connection when the traffic in the CBR connection is in asilent period in which there is no meaningful data to transmit. Due to thevery short length of the preservation slot, it only takes minimalportion of the bandwidth pre-allocated to the CBR connection, so that theremaining bandwidth can be freed for other connections to use. When the CBRsource becomes active again, the preservation slot is replaced bynormal data slots without any reservation operation, extra delay, orsignificant bandwidth loss. Consequently, the guaranteed service andsimplified signaling features of TDMA protocols, together with the adaptivebandwidth allocation features of PRMA-like protocols, are both realized in theHAMAC protocol. We have analyzed the performance of the HAMAC protocol usingextensive simulations. The results show that the HAMAC protocol can achievevery low loss rates for various multimedia traffic with stringent quality ofservice (QoS) requirements and outperforms state-of-the-art PRMA-likeprotocols. As a result, the HAMAC protocol appears to be a good candidate forfuture generation multimedia personal communication systems.  相似文献   

17.
Modern wireless networks are offering a wide range of applications that require the efficient integration of multimedia and traditional data traffic along with QoS provision. The IEEE 802.11e workgroup has standardized a new QoS enhanced access scheme for wireless LANs, namely Hybrid Control Function (HCF). HCF consists of the Enhanced Distributed Channel Access (EDCA) and the Hybrid Control Channel Access (HCCA) protocols which manage to ensure QoS support. However, they exhibit specific weaknesses that limit network performance. This work analyzes an alternative protocol, called Priority Oriented Adaptive Polling (POAP). POAP is an integrated channel access mechanism, is collision free, it employs priorities to differentiate traffic in a proportional way, it provides fairness, and generally supports QoS for all types of multimedia applications, while efficiently serving background data traffic. POAP is compared to HCF in order to examine the wireless network performance when serving integrated traffic.  相似文献   

18.
‘Anytime, anywhere’ communication, information access and processing are much cherished in modern societies because of their ability to bring flexibility, freedom and increased efficiency to individuals and organizations. Wireless communications, by providing ubiquitous and tetherless network connectivity to mobile users, are therefore bound to play a major role in the advancement of our society. Although initial proposals and implementations of wireless communications are generally focused on near‐term voice and electronic messaging applications, it is recognized that future wireless communications will have to evolve towards supporting a wider range of applications, including voice, video, data, images and connections to wired networks. This implies that future wireless networks must provide quality‐of‐service (QoS) guarantees to various multimedia applications in a wireless environment. Typical traffic in multimedia applications can be classified as either Constant‐Bit‐Rate (CBR) traffic or Variable‐Bit‐Rate (VBR) traffic. In particular, scheduling the transmission of VBR multimedia traffic streams in a wireless environment is very challenging and is still an open problem. In general, there are two ways to guarantee the QoS of VBR multimedia streams, either deterministically or statistically. In particular, most connection admission control (CAC) algorithms and medium access control (MAC) protocols that have been proposed for multimedia wireless networks only provide statistical, or soft, QoS guarantees. In this paper, we consider deterministic QoS guarantees in multimedia wireless networks. We propose a method for constructing a packet‐dropping mechanism that is based on a mathematical framework that determines how many packets can be dropped while the required QoS can still be preserved. This is achieved by employing: (1) An accurate traffic characterization of the VBR multimedia traffic streams; (2) A traffic regulator that can provide bounded packet loss and (3) A traffic scheduler that can provide bounded packet delay. The combination of traffic characterization, regulation and scheduling can provide bounded loss and delay deterministically. This is a distinction from traditional deterministic QoS schemes in which a 0% packet loss are always assumed with deterministically bounding the delay. We performed a set of performance evaluation experiments. The results will demonstrate that our proposed QoS guarantee schemes can significantly support more connections than a system, which does not allow any loss, at the same required QoS. Moreover, from our evaluation experiments, we found that the proposed algorithms are able to out‐perform scheduling algorithms adopted in state‐of‐the‐art wireless MAC protocols, for example Mobile Access Scheme Based on Contention and Reservation for ATM (MASCARA) when the worst‐case traffic is being considered. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
This paper presents a new Time Division Multiple Access/Frequency Division Duplexing (TDMA/FDD) based Medium Access Control (MAC) protocol for broadband wireless networks, supporting Quality of Service (QoS) for real-time multimedia applications. It also gives the Call Blocking Probability (CBP), packet end-to-end delay and utilization analysis of different service classes, as they are most essential performance criterions in broadband wireless network assessment. The Connection Admission Control (CAC) mechanism in the proposed MAC efficiently organizes the bandwidth allocation for different service classes by means of a fairness based scheduling algorithm. In addition, the simulation model of the proposed MAC scheme is realized by using OPNET Modeler network simulator. The results of the analytical calculations for the CBPs are compared to those of the simulation of the proposed MAC, thus validity of the MAC protocol is proved.  相似文献   

20.
Medium access control protocols for multimedia traffic in wirelessnetworks   总被引:1,自引:0,他引:1  
This article presents a survey on medium access control protocols for multimedia traffic in wireless networks. A basic overview of MAC protocol concepts is presented, and a framework is developed on which to base qualitative comparisons. The MAC protocols covered include third-generation TDMA and CDMA schemes intended for use in a single-hop wireless system. The operation of each protocol is explained, and its advantages and disadvantages ore presented. Finally, a qualitative comparative outline of the discussed protocols is provided, based on multimedia traffic requirements  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号