首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   484篇
  免费   27篇
  国内免费   2篇
工业技术   513篇
  2024年   2篇
  2023年   7篇
  2022年   3篇
  2021年   14篇
  2020年   14篇
  2019年   23篇
  2018年   25篇
  2017年   24篇
  2016年   21篇
  2015年   19篇
  2014年   19篇
  2013年   48篇
  2012年   35篇
  2011年   35篇
  2010年   24篇
  2009年   21篇
  2008年   23篇
  2007年   20篇
  2006年   19篇
  2005年   13篇
  2004年   10篇
  2003年   3篇
  2002年   5篇
  2000年   4篇
  1999年   4篇
  1998年   13篇
  1997年   5篇
  1996年   8篇
  1995年   6篇
  1994年   2篇
  1993年   2篇
  1989年   3篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   6篇
  1979年   4篇
  1978年   1篇
  1977年   2篇
  1976年   5篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1968年   1篇
  1967年   2篇
  1957年   1篇
  1955年   1篇
排序方式: 共有513条查询结果,搜索用时 46 毫秒
1.

Two promising technologies cosidered for the Beyond 5G networks are the terahertz and nano-technologies. Besides other possible application areas they hold the commitment to numerous new nano-scale solutions in the biomedical field. Nano-technology, as the name implies, examines the construction and design of nano-sized materials. These two interconnected emerging technologies have the potential to find application in quite many areas, one of the most importan being healthcare. This overview paper discusses the specifics of these technologies, their most important characteristics and introduces some of the trends for their application in the healthcare sector. In the first section terahertz frequency radio waves and their specific properties depending on the surrounding environment are discussed, followed by an introduction to nano-scale communications. Terahertz waves mandate the use of nano-scale antennas, which in turn brings us to the concept of nano-scale nodes. Nano-scale nodes are units that can perform the most basic functions of nano-machines and inter-nano-machine communications, which allow distributed nano-machines to perform more complex functions. Beyond 5G the development of these nano-communications is expected to lead to the emergence of new complex network systems. In the second part of this paper the paradigms of the Internet of Nano Things, molecular commnications and the Internet of Bio-Nano Things are discussed followed by details on their integration in healthcare related applications. The main goal of the article is to provide an introduction to these intriguing issues discussing advanced nano-technology enablers for Beyond 5G networks such as terahertz and molecular communications, nano-communications between nano-machines and the Internet of Bio-Nano-Things in light of health related applications.

  相似文献   
2.
Journal of Applied Electrochemistry - In this study, within the defined orthogonal array of Taguchi design, the hydrothermal process parameters have been optimized for fabricating the smallest...  相似文献   
3.
In this work, polyethylene glycol (PEG) as a phase change material (PCM) was incorporated with palygorskite (Pal) clay to develop a novel form-stable composite PCM (F-SCPCM). The Pal/PEG(40 wt%) composite was defined as F-SCPCM and characterized using SEM/EDS, FT-IR, XRD, DSC, and TGA techniques. The DSC results revealed that the F-SCPCM has a melting temperature of 32.5°C and latent heat capacity of 64.3 J/g for thermal energy storage (TES) applications. Thermal cycling test showed that the F-SCPCM had good cycling thermal/chemical stability after 500 cycles. The TGA data proved that that both cycled and non-cycled F-SCPCMs had considerable high thermal durability. Consequently, the created F-SCPCM could be considered as an additive material for production of green construction components with TES capability. POLYM. ENG. SCI., 60:909–916, 2020. © 2020 Society of Plastics Engineers  相似文献   
4.
5.
6.
In this study, the effects of changing first wall materials and their thicknesses on a reactor were investigated to determine the displacement per atom(DPA) and gas production(helium and hydrogen) in the first wall, as well as the tritium breeding ratio(TBR) in the coolant and tritium breeding zones. Therefore, the modeling of the magnetic fusion reactor was determined based on the blanket parameters of the International Thermonuclear Experimental Reactor(ITER). Stainless steel(SS 316 LNIG), Oxi...  相似文献   
7.
Identifying controls on the permeability of fluid‐conductive fractures is critical in tight reservoirs, but this is challenging in tectonically complex regions such as foothills belts where there may have been multiple stages of deformation and fracturing. Fracture permeability depends on fracture aperture and connectivity, both of which are affected by tectonism and cementation. Among the many factors that control the cementation history, oil charging may play an important role. Important challenges in studies of fractured reservoirs in tectonically complex regions include determining the timing (and intensity) of fracturing events relative to that of the oil charge, verifying the presence of matrix storage, and establishing the fracture cementation history. This paper reports on a comparative fracture study of four small‐scale oilfields in the west Ad?yaman Basin, located within the foothills belt of the Tauride suture zone in SE Turkey. Here the tight reservoir carbonates of the Say?ndere Formation (Campanian) were subjected to repeated phases of structural deformation. Major deformation phases took place in Campanian and Maastrichtian times, before oil charging into the reservoir began in the Eocene; and in the Late Eocene – Oligocene and Late Miocene, after the oil charge. Fractures that were generated before oil emplacement appear to have been cemented or partially cemented by calcite as indicated by cross‐cutting cemented fractures on borehole images. Partially‐cemented fractures in cores are oil‐stained with cement‐lined walls, suggesting cementation began before oil emplacement but was not completed. Image logs and cores also show the presence of clean, open fractures with no cement present on the walls. These open fractures cut across the cemented or partially‐cemented fractures, and are in general related to Late Miocene compressional folding. Open fracture density is correlated to Late Miocene fold curvature and asymmetry in the four oilfields studied. Of these fields, the ?ambayat structure is the tightest and most asymmetric anticline and hence has the maximum open fracture density; this field also has the highest oil potential. Although the available data is not sufficient to evaluate the effects of oil charging on fracture cementation definitively, the observations are consistent with a model that oil charge into the fractured Say?ndere Formation carbonates inhibited or slowed calcite cementation. Hence fracturing of a carbonate reservoir after oil emplacement may significantly enhance the fracture permeability, and may even render a tight reservoir prospective.  相似文献   
8.
Advanced hybrid biocomposites are engineered from nylon 6, waste wood biosourced carbon (biocarbon) with a low content of synthetic fiber for lightweight auto-parts uses. The novel engineering process through direct injection molding of only 2 wt% synthetic fibers in the form of masterbatch with 20 wt% biocarbon, results outstanding performance of the resulting nylon biocomposites. Such uniquely developed biocomposites show tensile strength of 105 MPa and tensile modulus of 5.14 GPa with a remarkable heat deflection temperature (HDT) of 206 °C. The direct injection molding of synthetic fiber retains the length ≈3 times higher as compared to traditional extrusion and injection molding; resulting greater degree of entanglement and composite reinforcement effectiveness in the hybrid biocomposites. Highly dimensionally stable nylon 6 biocomposites with a very low coefficient of linear thermal expansion results through reinforcing ability of the sustainable biocarbon and small amount of synthetic fiber.  相似文献   
9.
Melt rheology and crystallization behavior of polyamide 6 (PA 6) and microcrystalline cellulose (MCC) composites were systematically studied in this research. The incorporation of MCC into the PA 6 matrix resulted in higher complex viscosities (|η*|), storage modulus (G′), and shear viscosities than those of neat PA 6, especially at low frequencies. The orientation of rigid molecular chains in the composites introduced by the addition of MCC induced a strong shear thinning behavior with an increase in MCC loading. The non‐isothermal crystallization kinetics of PA 6 and MCC composites were investigated by differential scanning calorimetry. The Avrami and Tobin model were applied to describe the process of non‐isothermal crystallization and to determine the crystallization parameters of the composites. Analysis of the crystallization kinetics indicated that the Avrami (na) and Tobin exponent (nt) was altered by the MCC. It was also found that the Avrami and Tobin equations fit the empirical data well. POLYM. ENG. SCI., 54:739–746, 2014. © 2013 Society of Plastics Engineers  相似文献   
10.
The present work reports on electropolymerisation of aniline onto AISI 4140 steel substrate at room temperature in oxalic acid media by the potentiodynamic electrodeposition method. The effect of coating current density on the morphology of conductive polymer films and their corrosion behaviour has been investigated. The electrolyte solution comprised 0.1 M aniline?+?0.3 M oxalic acid. The effects of deposition current density changes (0.1, 0.2, 0.3, 0.4 and 0.5?mA cm?2) on the films were investigated. The PANI film was characterised using cyclic voltammetry and optical microscopy; it was covered with a dark green-yellow homopolymer film of strongly adherent homogeneous characteristic. The corrosion behaviour of steel electrodes with and without polyaniline (PANI) film in 3.5 wt-% NaCl solution was investigated through anodic polarisation curves. The results indicated that the PANI coating obtained under 0.2?mA cm?2 was the most corrosion protective.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号