首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
桥墩温差荷载作用下桥上无缝线路钢轨附加力研究   总被引:3,自引:1,他引:2  
根据梁轨相互作用原理,建立了"轨-梁-墩-体化"有限元模型,采用单位荷载法计算了桥墩温差荷载引起的墩顶纵向位移,计算了桥墩温差引起的桥上无缝线路钢轨附加力.桥墩高度对桥墩温差引起的钢轨附加力影响比较敏感,当桥墩较高时,桥墩温差引起的钢轨附加力不能忽略,建议在高墩桥上设计无缝线路时,应考虑桥墩温差引起的钢轨附加力,并与其他钢轨附加力进行荷载组合,检算钢轨强度和无缝线路稳定性.  相似文献   

2.
结合上海城市轨道交通11号线建设的实际需要,通过研究城市交通轨道纵向力的传递机理,建立桥上无缝线路纵向力线桥墩一体化计算模型,进而进行无缝线路钢轨附加力计算,指导桥墩刚度优化设计;无缝线路设计主要包括:锁定轨温设计,钢轨伸缩调节器布置,轨条和扣件布置设计,以及进行钢轨强度和稳定性检算,断缝和防爬检算等内容。  相似文献   

3.
南仓特大桥桥上无缝线路设计   总被引:1,自引:0,他引:1  
研究目的:研究刚构连续梁桥上无缝线路伸缩力的计算方法以及在曲线桥上不能设置伸缩调节器的情况下,如何加强无缝线路稳定性。 研究方法:通过对结构进行分析,建立刚构连续梁力学计算模型,利用计算机程序计算伸缩力;通过分析结构稳定性,研究桥上无缝线路线路加强设备。 研究结果:研制出在路基和桥梁地段都适用的无缝线路加强设备,即横向阻力器,通过实测阻力检算无缝线路稳定性。 研究结论:刚构连续梁可根据其结构建立计算模型计算伸缩力,计算参数宜采用实测数据,线路纵、横向阻力现场实测更重要;桥墩对梁的变形影响随墩刚度增加而增大,当采用高墩即墩顶纵向刚度较小时,影响也较小;横向阻力器制造、搬运和安装均较简单,而且对保证无缝线路稳定性有很大作用。  相似文献   

4.
针对大兴线跨京开高架桥上双向钢轨伸缩调节器的布设情况,运用梁轨相互作用原理,进行桥上无缝线路纵向力计算,通过对桥墩受力、轨道强度、无缝线路压弯变形、钢轨断缝等进行检算,论证了取消该桥上钢轨伸缩调节器,铺设无缝线路的可行性,以期为我国城市轨道交通跨区间无缝线路的设计提供相关参考。  相似文献   

5.
温度跨度对桥上无缝线路钢轨伸缩附加力影响很大,是设置钢轨伸缩调节器的关键因素之一。基于连续刚构梁桥墩纵向水平刚度以及两侧简支梁支座布置对桥上无缝线路受力变形的影响,采用理论分析和ANSYS有限元软件研究了连续刚构梁桥上无缝线路温度跨度。结论表明刚构墩刚度越大,温度力作用下钢轨伸缩附加力越小,桥梁变形越小,但影响很小;制动力作用下,梁轨快速相对位移和钢轨制动附加力越小,但影响较大。分析时一般可将连续刚构梁桥简化为仅有一个固定支座且位于其几何中点处的连续梁,温度跨度即为该点到相邻一跨(联)桥上固定支座之间的距离,分析计算精度可满足桥上无缝线路设计检算的需要。研究结果对我国大跨度连续刚构桥桥上无缝线路的建设有着重要的指导作用。  相似文献   

6.
在高墩大跨桥梁中,由于夏季太阳辐射作用混凝土结构会出现膨胀,桥墩整体升温会导致墩顶竖向位移增加,从而引起桥上无缝线路纵向附加力和钢轨竖向位移。为研究桥墩整体升温对无砟轨道中轨道部件受力和变形的影响,基于梁轨相互作用原理,利用有限元方法,建立线—桥—墩一体化模型,分析高墩大跨桥墩升温条件下桥上无砟轨道无缝线路的受力以及平顺性。计算结果表明:桥墩整体升温对钢轨的纵向力、梁轨相对位移、凸台树脂变形和凸台受力的影响均很小,在无缝线路设计和检算时可以不考虑其对钢轨强度的影响,但会引起线路竖向不平顺,且主要是长波不平顺。  相似文献   

7.
中小跨度长联连续梁桥桥上无缝线路纵向力的研究   总被引:4,自引:1,他引:3  
针对固定墩组和拉压连接器两种桥梁结构,分析计算长联连续梁桥无缝线路纵向力。根据桥梁、钢轨的相互作用关系,建立纵向力计算模型,应用该模型,分析比较了桥梁联长、桥墩刚度以及轮轨粘着系数对纵向力的影响。根据附加纵向力的大小以及长钢轨伸缩位移量,提出了长联连续梁的最大联长,在连续梁中间设置钢轨伸缩调节器时,固定墩组桥梁体系连续梁联长应小于500m~600m,拉压连接器桥梁体系连续梁联长应小于1000m~1200m。研究结果表明,桥上无缝线路长钢轨的附加纵向力与桥墩的刚度有关,刚度减小,长钢轨的附加纵向力增加,对桥上无缝线路的强度和稳定性不利,根据长钢轨附加制动力的大小,提出了不同联长的连续梁桥墩刚度的最小限值。  相似文献   

8.
为研究有轨电车小半径曲线连续钢梁桥上铺设无缝线路,利用有限元法建立轨道-桥梁曲线线型相互作用模型,分别对有缝线路布置、不设钢轨伸缩调节器无缝线路布置、设钢轨伸缩调节器无缝线路布置进行了降温伸缩工况计算。研究结果表明:有缝线路轨缝在大跨度桥梁梁端较难协调桥梁伸缩位移,轨缝存在夏季顶死、冬季拉大的病害;不设钢轨伸缩调节器的无缝线路导致曲线连续梁桥墩承受较大的钢轨温度力径向分力,曲线与直线线型衔接处存在轨向不平顺;设钢轨伸缩调节器的无缝线路通过钢轨伸缩调节器释放了钢轨温度力,桥墩承受的钢轨温度力径向分力较小。考虑到梁轨的纵向和横向耦合作用,采用曲线线型建立计算模型较为符合实际工况。  相似文献   

9.
温度梯度对高墩桥上无缝线路的影响分析   总被引:3,自引:0,他引:3  
为研究温度对高墩大跨桥上无缝线路的影响,基于梁轨相互作用原理,利用有限元方法,建立线—桥—墩一体化模型,计算高墩大跨桥梁桥墩受到纵向和横向温度梯度荷载时钢轨的纵向力和梁轨相对位移。计算结果表明:桥墩受到纵向温度梯度荷载时钢轨受到的最大压力为523.09 kN,与最大附加伸缩力值584.95 kN接近,纵向温度荷载对桥上无缝线路的影响近似等同于附加伸缩力,在设计桥上无缝线路时必须予以考虑;横向温度梯度荷载对桥梁本身的影响较小,在设计中可以通过安全系数予以控制,在设计中可忽略。分析温度荷载对高墩桥上无缝线路的影响,对于桥梁的安全设计和保证桥上无缝线路的稳定状态均具有一定的指导意义。  相似文献   

10.
为探究活动支座摩阻对大跨连续梁桥上无缝线路梁-轨相互作用的影响,基于梁-轨相互作用及有限元理论,将活动支座摩阻等效为非线性弹簧,建立可考虑活动支座摩阻的连续梁桥上无缝线路空间耦合模型,对考虑活动支座摩阻前、后的钢轨及桥墩结构受力变形展开对比分析。结果表明,活动支座摩阻增强了连续梁与无缝线路的纵向约束,当活动支座摩阻率从0增大至0.06时,温度作用下,连续梁桥上钢轨纵向力及梁轨相对位移峰值分别减小了24.32%和29.89%,连续梁桥固定墩纵向力增加了2.44倍;制动荷载作用下,钢轨制动力、梁轨相对位移及连续梁桥固定墩纵向力分别减小了53.51%、56.94%和41.63%;断轨工况下,部分断轨力通过活动支座摩阻传递给非固定墩,连续梁桥固定墩纵向力减小了60.64%,钢轨断缝值减小了3.3%;活动支座摩阻对大跨连续梁桥上无缝线路及桥墩纵向力影响较大,建议在大跨连续梁桥上无缝线路及桥墩设计中考虑活动支座摩阻的影响。  相似文献   

11.
桥墩温差荷载引起的桥上无缝线路钢轨附加力   总被引:5,自引:0,他引:5  
采用单位荷载法计算桥墩温差荷载引起的墩顶纵向位移。根据梁轨相互作用原理,建立“轨—梁—墩”有限元模型,计算桥墩温差引起的桥上无缝线路钢轨附加力,研究桥墩温差引起的钢轨附加力的分布规律及其影响因素。研究表明:多跨简支梁桥墩温差引起的钢轨附加力的最大压力出现在右桥台处,最大拉力出现在靠近左桥台的边墩处,离桥台越远,钢轨附加力越小;随着墩高的增加,桥墩温差引起的钢轨附加力增大,建议在设计高墩桥上无缝线路时,应考虑桥墩温差引起的钢轨附加力,并与其他钢轨附加力叠加检算钢轨强度和无缝线路稳定性;桥墩温差引起的钢轨附加力,随着桥墩纵向水平线刚度的增加先快速增大,到一定程度后变缓;桥梁跨度对桥墩温差引起的钢轨附加力影响很小;钢轨附加力随着简支梁跨数的增加而增大,但逐渐变缓,当简支梁跨数超过18跨以后,钢轨附加力不再增长。  相似文献   

12.
广珠城际简支梁墩顶纵向水平线刚度限值研究   总被引:1,自引:0,他引:1  
桥上无缝线路设计是跨区间无缝线路设计的重要组成部分,在桥上铺设无缝线路必须进行梁轨相互作用分析,并对桥梁和轨道结构进行检算。桥上无缝线路钢轨、墩台的纵向力及位移的分布很大程度上取决于桥梁墩台纵向水平线刚度。针对广珠城际铁路的活载类型、轨道结构类型等具体情况,根据桥墩纵向水平线刚度的控制条件,对常见跨度的简支梁桥墩纵向水平线刚度的限值进行了分析计算。  相似文献   

13.
京九铁路黄沙尾大桥桥上无缝线路设计方案研究   总被引:1,自引:1,他引:0  
基于MALAB语言编制了桥上无缝线路纵向力计算软件.提出了京九铁路黄沙尾大桥桥上无缝线路设计方案.计算结果表明黄沙尾大桥桥上可不设钢轨伸缩调节器;锁定轨温取(30±5)℃时,桥上无缝线路强度、稳定性、断缝满足设计要求,桥墩、墩顶和桥墩基底受力状态和稳定性满足设计要求.  相似文献   

14.
地震作用下大跨桥上无缝线路纵向响应的研究具有重要意义。以一座大跨桥梁为例,研究了一致激励下桥上无缝线路纵向地震响应,并对小阻力扣件铺设、梁体温差及地震波频谱特性对钢轨最大纵向力的影响进行了分析。得出结论:轨道约束对大跨桥梁结构的低阶纵向自振频率有较大的影响;地震作用下梁缝处钢轨最大纵向力比根据现有规范计算的钢轨最大伸缩力大很多,铁路工程相关规范应增加钢轨地震力检算这一指标;大跨桥上铺设小阻力扣件后,地震时钢轨最大纵向力会降低约20%~30%;穿越震区的大跨桥上无缝线路设计应合理考虑梁体温差的影响,并使桥梁结构低阶纵向自振频率有效避开场地处地震波的主频率段,否则地震发生时桥上无缝线路工作状态将会受到较大考验。  相似文献   

15.
基于梁轨相互作用原理,采用有限元方法建立线-桥-墩一体化计算模型,以多跨简支梁和连续梁为例,分析不同墩台刚度对桥上无缝线路计算的影响。计算结果表明:钢轨伸缩力与伸缩位移、墩台纵向力均随着墩台纵向水平刚度的增大而增大,但增加幅度逐渐减缓;墩台自身的纵向水平位移会改变梁轨系统的纵向受力情况,当桥梁墩台自身位移较大时,应在桥上无缝线路纵向力计算中考虑其作用;钢轨挠曲力随着墩台刚度增大而增大,桥墩纵向水平刚度对钢轨制动力及梁轨相对位移的影响较为明显,应据此设定其对墩台最小水平刚度的限值;墩台刚度越大,钢轨断缝值越小。为满足断缝值不超限,桥梁墩台设计时应合理确定其纵向水平刚度值。  相似文献   

16.
高墩大跨刚构桥桥墩若出现工后沉降,桥墩纵向和横向的沉降值存在差异,将导致桥墩出现纵横向偏转。针对桥墩偏转对无缝线路的影响,结合某一高墩大跨刚构桥上无缝线路,利用有限元方法,建立空间线—桥—墩—体化模型,分析桥墩纵向、横向偏转对桥上无缝线路的影响。计算结果表明:随着桥墩纵向偏转角度的增加,钢轨中产生的附加力近似呈线性增加;当桥墩纵向偏转与温度荷载耦合时,桥墩纵向偏转所引起的钢轨纵向力变化幅度不大。桥墩的横向偏转主要引起轨道长波不平顺,钢轨位移及不平顺随着桥墩的横向偏转角的增加而增加,并且当桥墩横向偏转角较大时,整个桥上无缝线路会出现多处不平顺超限,超限位置主要分布在左、右侧桥台及两个梁体接缝处。  相似文献   

17.
多联大跨连续梁由于桥梁联数较多,温度跨度联数及长度均较大,桥上无缝线路设计需设置多组钢轨伸缩调节器,采取调整连续梁固定支座位置的方式合并相临温度跨,可减少大温度跨度联数,进而达到减少钢轨伸缩调节器设置数量的目的。结合郑西客运专线渭南二跨渭河特大桥多联大跨连续梁桥上无缝线路设计,建立"钢轨-桥梁-墩台"一体化有限元模型进行钢轨纵向附加力的检算,检算结果表明,采用优化桥梁固定支座布置的方式可减少钢轨伸缩调节器设置数量。  相似文献   

18.
桥墩温度梯度对高墩大跨桥上无砟轨道影响研究   总被引:3,自引:3,他引:0  
由于太阳光的辐射,桥墩的向阳和背阳侧就会存在温差,当桥墩高度较大时,墩顶就会产生较大的纵横向位移,带动梁体、轨道板、钢轨偏移,产生桥上无缝线路附加力。为了研究桥墩纵向温度梯度作用下对无砟轨道中轨道部件的受力和变形的影响,基于梁轨相互作用原理,利用有限元方法,建立线-桥-墩一体化模型,计算结果表明:仅考虑桥墩纵向温度梯度荷载时钢轨会产生较大的附加力,且随着桥墩刚度的增加,钢轨附加力也会增加。当同时考虑梁体升温和纵向温度梯度时产生的钢轨附加力小于两者单独作用产生的附加力。无论是仅考虑桥墩纵向温度梯度,还是同时考虑梁体温升和温度梯度,凸台受力和树脂变形均不会发生较大变化。  相似文献   

19.
桥墩纵向水平刚度对桥上无缝道岔的影响   总被引:1,自引:1,他引:0  
为了进一步研究桥上无缝道岔,通过计算,分析桥墩纵向水平刚度在连续梁桥上对钢轨、道岔、墩台等结构部件受力及变形的影响。本文采用ANSYS软件建立桥上无缝道岔的岔—桥—墩纵向相互作用一体化模型,并进行力学分析。研究结果是:随着连续梁桥桥墩刚度的增大,基本轨伸缩附加力减小,连续梁桥墩的纵向力增大;增大连续梁桥墩纵向水平刚度对铺设于其上的无缝道岔的受力与变形是有利的。  相似文献   

20.
以某在建大跨度钢桁梁柔性拱桥为研究对象,运用梁轨相互作用原理,采用有限元方法建立桥上无缝线路计算模型,提出4种扣件铺设方案并分析其梁轨相互作用。结果表明:(1)对于明桥面无缝线路,桥梁温度跨度和扣件纵向阻力是影响无缝线路纵向力的决定性因素,大跨度钢桁梁柔性拱桥的纵梁体系对无缝线路纵向力的影响有限。(2)若不设置钢轨伸缩调节器,无缝线路钢轨强度检算不能满足规范要求。(3)应根据桥梁梁端最大伸缩位移,选择相应的梁端伸缩装置和钢轨伸缩调节器。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号