首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The thermal stability and spectroscopic properties of Er2O3-doped TeO2–GeO2–ZnO–Na2O–Y2O3 glasses for 1.5 μm fiber amplifiers were investigated. The thermal stability of the 75TeO2·20ZnO· 5Na2O glass was improved by introducing GeO2 and Y2O3. The radiative transition and the nonradiative transition have a dominant influence on the 4I13/2 level lifetime of Er3+ in high- and low-GeO2 regions, respectively. Adding Y2O3 increases the 4I13/2 level lifetime of Er3+ significantly. The Judd–Ofelt (J-O) parameter Ω6 shows a strong correlation with the 1.5 μm emission bandwidth; and the larger the Ω6, the wider the bandwidth.  相似文献   

2.
Phase-pure perovskite Pb(Zn x Mg1– x )1/3Nb2/3O3 solid solution (PZ x M1– x N) is obtained for x ≦ 0.7 by heating a milled stoichiometric mixture of PbO, Mg(OH)2, Nb2O5, and 2ZnCO3·3Zn(OH)2·H2O at 1100°C for 1 h. Percent perovskite ( f P) with respect to total crystalline phase decreases with increasing temperature of subsequent heating then increases to 900°C for the mixtures where x ≦ 0.8 and milled for 3 h. For mixtures with x = 0.9 and x = 1, f P decreases monotonically. Curie temperature increases almost linearly with increasing x up to x = 0.7. The maximum dielectric constant at 1 kHz is 2×104 and 1.7×104 for the mixture with x = 0.4 and x = 0.7, respectively. The stabilization mechanism of strained perovskite is discussed.  相似文献   

3.
A porous glass-ceramic in the CaO–TiO2—P2O5 system has been prepared by crystallization and subsequent chemical leaching of the corresponding glass. By applying a two-step heat treatment to 45CaO · 25TiO2· 30P2O5 glasses containing a few mol% of Na2O, volume crystallization results in the formation of dense glass-ceramics composed of CaTi4(PO4)6 and β-Ca3(PO4)2 phases. By leaching the resultant glass ceramics with HCI, β-Ca3(PO4)2 is selectively dissolved out, leaving a crystalline CaTi4(PO4)6 skeleton. The surface area and mean pore radius of the porous glass-ceramics were approximately 40 m2/g and 13 nm, respectively.  相似文献   

4.
Phase relations in the system Bi2O3-WO3 were studied from 500° to 1100°C. Four intermediate phases, 7Bi2O3· WO3, 7Bi2O3· 2WO3, Bi2O3· WO3, and Bi2O3· 2WO3, were found. The 7B2O · WO3 phase is tetragonal with a 0= 5.52 Å and c 0= 17.39 Å and transforms to the fcc structure at 784°C; 7Bi2O3· 2WO3 has the fcc structure and forms an extensive range of solid solutions in the system. Both Bi2O3· WO3 and Bi2O3· 2WO3 are orthorhombic with (in Å) a 0= 5.45, b 0=5.46, c 0= 16.42 and a 0= 5.42, b 0= 5.41, c 0= 23.7, respectively. Two eutectic points and one peritectic exist in the system at, respectively, 905°± 3°C and 64 mol% WO3, 907°± 3°C and 70 mol% WO3, and 965°± 5°C and 10 mol% WO3.  相似文献   

5.
Samarium ions (Sm2+) incorporated into aluminosilicate glasses by a sol-gel process showed persistent spectral hole burning at room temperature. Gels of the system Na2O-Al2O3SiO2 synthesized by the hydrolysis of Si(OC2H5)4, Al(OC4H9)3, CH3 COONa, and SmCl3·6H2O were heated in air at 500°C, then reacted with H2 gas to form Sm2+ ions. Whereas Al3+ ions effectively dispersed the Sm3+ ions in the glass structure, Na+ ions were not effective. The Al2O3-SiO2 glasses proved appropriate for reacting the Sm3+ ions with H2 gas and exhibited the intense photoluminescence of Sm2+ ions. The reaction of Sm3+ ions with H2 in the Al2O2-SiO2 glasses was determined by first-order kinetics, and the activation energy equaled 95 kJ/mol. At 800°C, the maximum photoluminescence of the Sm2+ ions was achieved within 20 min.  相似文献   

6.
The effect of zirconium ions on glass structure and proton conductivity was investigated for sol-gel-derived P2O5–SiO2 glasses. Porous glasses were prepared through hydrolysis of PO(OCH3)3, Zr(OC4H9)4, and Si(OC2H5)4. Chemical bonding of the P5+ ions was characterized using 31P-NMR spectra. The phosphorous ions, occurring as PO(OH)3 in the ZrO2-free glass, were polymerized with one or two bridging oxygen ions per PO4 unit with increased ZrO2 content. The chemical stability of these glasses was increased significantly on the addition of ZrO2, but the conductivity gradually decreased from 26 to 12 mS/cm at room temperature for 10P2O5·7ZrO2·83SiO2 glass. A fuel cell was constructed using 10P2O5·5ZrO2·85SiO2 glass as the electrolyte; a power of ∼4.5 mW/cm2 was attained.  相似文献   

7.
Phase relations in the system Na2O· Al2O3-CaO· Al2O3-Al2O3 at 1200°C in air were determined using the quenching method and high-temperature X-ray diffraction. The compound 2Na2O · 3CaO · 5Al2O3, known from the literature, was reformulated as Na2O · CaO · 2Al2O3. A new compound with the probable composition Na2O · 3CaO · 8Al2O3 was found. Cell parameters of both compounds were determined. The compound Na2O · CaO-2Al2O3 is tetragonal with a = 1.04348(24) and c = 0.72539(31) nm; it forms solid solutions with Na2O · Al2O3 up to 38 mol% Na2O at 1200°C. The compound Na2O · 3CaO · 8Al2O3 is hexagonal with) a = 0.98436(4) and c = 0.69415(4) nm. The compound CaO · 6Al2O3 is not initially formed from oxide components at 1200°C but behaves as an equilibrium phase when it is formed separately at higher temperatures. The very slow transformation kinetics between β and β "-Al2O3 make it very difficult to determine equilibrium phase relations in the high-Al2O3 part of the diagram. Conclusions as to lifetime processes in high-pressure sodium discharge lamps can be drawn from the phase diagram.  相似文献   

8.
A technique for growing α-Al2O3 crystals is described in which Na2O·11Al2O3 is dissolved in a liquid of composition Na2O·4TiO2·3Al2O3. Alpha Al2O3 is precipitated as Na2O evaporates from the system; Na2O·11Al2O3 serves as a source of Al2O3, and Na2O in the liquid. The content of solids in the mixture is always such that it does not melt completely. The size of the α-Al2O3 crystals grown is related to the Na2O content of the composition. Crystals as large as 4000 by 3000 μm in the α-axis direction and 500 μm in the c -axis direction have been grown.  相似文献   

9.
Crystallization of the poorly durable Na2MoO4 phase able to incorporate radioactive cesium must be avoided in SiO2–Al2O3–B2O3–Na2O–CaO glasses developed for the immobilization of Mo-rich nuclear wastes. Increasing amounts of B2O3 and MoO3 were added to a SiO2–Na2O–CaO glass, and crystallization tendency was studied. Na2MoO4 crystallization tendency decreased with the increase of B2O3 concentration whereas the tendency of CaMoO4 to crystallize increased due to preferential charge compensation of BO4 entities by Na+ ions. 29Si MAS NMR showed that molybdenum acts as a reticulating agent in glass structure. Trivalent actinides surrogate (Nd3+) were shown to enter into CaMoO4 crystals formed in glasses.  相似文献   

10.
Sodium depth profiles were determined in water-leached glass samples with molar composition 20Na2O · 10RO · x Al2O3· (70 - x)SiO2 (RO = CaO, MgO, and ZnO) using secondary ion mass spectrometry. The leaching of sodium ions decreases with increasing Al2O3 content in all three glass systems. For x = 0 the leaching is hardly affected by the nature of the divalent cation. For x = 5 and 10 the corrosion resistance is highest for the glass containing ZnO, and for the glasses containing ZnO and MgO, respectively. These glasses correspond to those with the smallest fraction of NBOs. From all these results it is concluded that the nonbridging oxygen atoms play an important role in promoting the leaching of a glass.  相似文献   

11.
In order to evaluate the crystallization tendency of glasses, the ratio of the crystallization temperature to the liquidus temperature ( T c/ T L) was obtained by DTA measurement for the Na2O–B2O3 and Na2O–B2O3–Al2O3 systems. The critical cooling rate for glass formation ( Q *) was also measured. The measurements were performed in the composition range of (100 − x )Na2O–( x )B2O3, ( x = 25–35 and 60–100 mol%), and (100 − y )0.5Na2O·0.5B2O3−( y )Al2O3, ( y = 6–34 mol%). The relationship between T c/ T L and Q * was discussed. A linear relationship between T c/ T L and log Q * for these systems was found. Furthermore, the relationship between T c/ T L and Q * was verified by computer simulation based on the crystallization kinetics of glass or supercooled liquid.  相似文献   

12.
Ternary Na2O.Sb2O3.GeO2 glasses (with various [Na]/[Na + Sb] ratios) that contained ≥65 mol% GeO2 were prepared. Their densities (volumes), refractive indices, and infrared spectra were determined and their colors noted. The ternary glasses with ≥88 mol% GeO2 exhibit nearly additive volumes, refractivities, and frequencies for the main Ge-O vibration. Ternary glasses with lesser amounts of GeO2 exhibit a variety of behaviors, depending on the [Na]/[Na + Sb] ratio. Small amounts of Sb2O3 cause significant volume and refraction deviations, as well as changes in νGe-O, that can be associated with gradual elimination of GeO6 octahedra. All the information supports a model for the glasses with 65 to 88 mol% GeO2 that involves a degree of depolymerization that is greater when Na2O and Sb2O3 are present together than when either is present alone.  相似文献   

13.
Photochemical hole burning (PHB) not only can be applied for data storage systems but also serves as a powerful method for studying the local structure around optical centers. The present work investigated the effects of aluminum, magnesium, and silicon ions on hole burning and the phonon sideband for borate glasses that exhibit PHB at room temperature. Hole burning was measured for the 5 D 0−7 F 0 transition of Sm2+ and the phonon sideband spectrum for the 5 D 0-7 F 0 transition of Eu3+. The hole width was closely related to local structural change, especially as it seemed to decrease with decreases in the number of nonbridging oxygens produced around the rare-earth ions. In the case of sodium aluminoborate glasses, the hole width decreased considerably with increasing alumina content. The ratio Γihh for 85B2O3·10Al2O3·5Na2O·1Sm2O3 glass, then, was 80 at room temperature, the largest value ever reported.  相似文献   

14.
Density (and some viscosity) data are presented for binary sodium borate melts containing as much as 60 mole % Na2O and for ternary sodium silicoborate melts with B/Si <2.0 between 1000°C and 1300°C. The high-temperature partial molar volume analysis of the binary sodium borate melts reveals about 50% BO4 tetrahedra at the 40 mole % Na2O composition, in agreement with recent NMR estimates for the binary glasses. No "boron anomaly" was found near 18 mole % Na2O at high temperature. The synthetic partial molar volume model that agrees best with experiment for all ternary melts studied involves the presence of some BO4 tetrahedra, the percentage of which varies with composition. This ternary model involves a high degree of internal consistency. No tendency toward extensive micro-immiscibility was observed for ternary melts near the SiO2·B2O3 binary.  相似文献   

15.
Porous Al2O3/20 vol% LaPO4 and Al2O3/20 vol% CePO4 composites with very narrow pore-size distribution at around 200 nm have been successfully synthesized by reactive sintering at 1100°C for 2 h from RE2(CO3)3· x H2O (RE = La or Ce), Al(H2PO4)3 and Al2O3 with LiF additive. Similar to the previously reported UPC-3Ds (uniformly porous composites with a three-dimensional network structure, e.g. CaZrO3/MgO system), decomposed gases in the starting materials formed a homogeneous open porous structure with a porosity of ∼40%. X-ray diffraction, 31P magic-angle spinning nuclear magnetic resonance, scanning electron microscopy, and mercury porosimetry revealed the structure of the porous composites.  相似文献   

16.
The phase diagram for the ternary system MgO─P2O5─H2O at 25°C has been constructed. The magnesium phosphates represented are Mg(H2PO4)2· n H2O ( n = 4, 2, 0), MgHPO4·3H2O, and Mg3(PO4)2· m H2O ( m = 8, 22). Because of the large differences in the solubilities of these compounds, the technique which involves plotting the mole fractions of MgO and P2O5 as their 10th roots has been employed. With the exception of MgHPO4·3H2O, the magnesium phosphates are incongruently soluble. Because incongruency is associated with a peritectic-like reaction, the phase Mg2(PO4)3· 8H2O persists metastably for an extended period.  相似文献   

17.
The glass formation region, crystalline phases, second harmonic (SH) generation, and Nd:yttrium aluminum garnet (YAG) laser-induced crystallization in the Sm2O3–Bi2O3–B2O3 system were clarified. The crystalline phases of Bi4B2O9, Bi3B5O12, BiBO3, Sm x Bi1− x BO3, and SmB3O6 were formed through the usual crystallization in an electric furnace. The crystallized glasses consisting of BiBO3 and Sm x Bi1− x BO3 showed SH generations. The formation of the nonlinear optical BiB3O6 phase was not confirmed. The formation (writing) region of crystal lines consisting of Sm x Bi1− x BO3 by YAG laser irradiation was determined, in which Sm2O3 contents were∼10 mol%. The present study demonstrates that Sm2O3–Bi2O3–B2O3 glasses are promising materials for optical functional applications.  相似文献   

18.
Niobium pentoxide (T form, orthorhombic system) was utilized to promote devitrification in Li2O · Al2O3· 6SiO2 glasses. Two or more mole percentage of this nucleating dopant enhanced crystallization in these glasses. Glasses containing 4.0 and 8.0 mol% T-Nb2O5 exhibited a high tendency to form dispersed TT-Nb2O5 (monoclinic system) precipitates during the glass quenching process. The crystallization process in glasses containing 2.0 or 4.0 mol% T-Nb2O5 occurred as microphase separation, followed by the formation of dispersed TT-Nb2O5 crystalline precipitates (760°C), followed by β-quartz solid-solution ( ss ) formation (850° to 900°C) heterogeneously nucleated from the precipitates. β-quartz( ss ) transformed to β-spodumene( ss ), along with a polymorphic transition from the TT-Nb2O5 to M-Nb2O5 (tetragonal system) crystalline phase.  相似文献   

19.
The viscosity of sodium borate slags at high Na2O concentrations (37.3 to 49.4 mol%) and high temperatures (1000° to 1300°C) follows an Arrhenius-type relationship. This relationship was also observed for sodium borate slags (mass% Na2O/mass% B2O3= 0.86) containing CaO and CaF2 for the same temperature range. There has been a reduction in viscosity of the sodium borate slags (mass% Na2O3mass% B2O = 0.53 to 0.86) with increase in Na2O concentration. On adding CaO (10 to 50 mass%) to the sodium borate slag (mass% Na2O/mass% B2O3= 0.86), the viscosity increased considerably, while an addition of CaF2 (S to 15 mass%) to the slag (30.9 mass% Na2O3 35.8 mass% B2O3, 33.3 mass% CaO) decreased the viscosity. The average activation energies of Na2O─B2O3, Na2O─B2O3─CaO3 and Na2O─B2O3─CaO─CaF2 slag systems have been estimated as 14.6, 124.7, and 41.4 kJ/mol, respectively, for the given composition ranges and 1000° to 1300°C temperature range.  相似文献   

20.
Alumina and gallia were substituted separately for Na2O in amounts of 0.2, 0.5, 1.0, 1.5, 2.0, and 3.0 wt% in three Na2O-SiO2 glass compositions (82, 84, and 86 wt% SiO2) within the immiscibility region. The immiscibility regions for each system extend to ∼1.5 mol% of the added oxide. In general, the addition reduced the immiscibility temperature ( T m), but at the edge of the immiscibility region (82% SiO2) the Na2O loss effect initially increased T m. A structural model of the miscibility of Al2O3 added to silicate glasses is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号