首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1306篇
  免费   39篇
  国内免费   7篇
工业技术   1352篇
  2022年   8篇
  2021年   11篇
  2020年   5篇
  2019年   15篇
  2018年   20篇
  2017年   12篇
  2016年   29篇
  2015年   17篇
  2014年   28篇
  2013年   60篇
  2012年   63篇
  2011年   68篇
  2010年   60篇
  2009年   66篇
  2008年   62篇
  2007年   63篇
  2006年   55篇
  2005年   47篇
  2004年   52篇
  2003年   49篇
  2002年   48篇
  2001年   30篇
  2000年   40篇
  1999年   24篇
  1998年   29篇
  1997年   18篇
  1996年   25篇
  1995年   26篇
  1994年   19篇
  1993年   19篇
  1992年   16篇
  1991年   13篇
  1990年   15篇
  1989年   14篇
  1988年   14篇
  1987年   16篇
  1986年   14篇
  1985年   16篇
  1984年   22篇
  1983年   18篇
  1982年   20篇
  1981年   18篇
  1980年   16篇
  1979年   14篇
  1978年   14篇
  1977年   14篇
  1976年   3篇
  1975年   10篇
  1974年   4篇
  1973年   4篇
排序方式: 共有1352条查询结果,搜索用时 31 毫秒
1.
Protein-splicing domains are frequently used engineering tools that find application in the in vivo and in vitro ligation of protein domains. Directed evolution is among the most promising technologies used to advance this technology. However, the available screening systems for protein-splicing activity are associated with bottlenecks such as the selection of pseudo-positive clones arising from off-pathway reaction products or fragment complementation. Herein, we report a stringent screening method for protein-splicing activity in cis and trans, that exclusively selects productively splicing domains. By fusing splicing domains to an intrinsically disordered region of the antidote from the Escherichia coli CcdA/CcdB type II toxin/antitoxin system, we linked protein splicing to cell survival. The screen allows selecting novel cis- and trans-splicing inteins catalyzing productive highly efficient protein splicing, for example, from directed-evolution approaches or the natural intein sequence space.  相似文献   
2.
In recent years, the expansion of demand for lithium ion batteries has resulted in soaring prices of the constituent resources. From the viewpoint of safety, studies on all-solid-state batteries are actively being carried out. In this study, we succeeded in driving all-solid-state batteries derived from nontoxic oxide glasses at room temperature without requiring scarce resources such as lithium and cobalt. The main structure of the ceramic batteries with a simple structure in which Na2FeP2O7 crystallized glass and β″-alumina solid solution are joined by pressureless cofiring at 550°C. During the crystallization of Na2O-Fe2O3-P2O5 glass, fusion with the β″-alumina solid solution is achieved. Reversible charge and discharge of 80 mAh/g were achieved at room temperature. It is not necessary to apply pressure during cell preparation or the use of the batteries. Furthermore, the strong junction at the cathode and electrolyte interface does not peel off during charge and discharge over a long period of 623 cycles. Ex situ X-ray photoelectron spectroscopy revealed partial Fe4+ induction and a reversible charge and discharge reaction even after overcharging to 9 V. It was demonstrated that Na2FeP2O7 is very stable against overcharging to 9 V.  相似文献   
3.
Efficient gas recovery and separation in a hydrate-based system was investigated for a model gaseous mixture of R22 and nitrogen. The formed hydrate settled in the recovery vessel; excess water was recycled and the hydrate was subsequently decomposed by releasing pressure from the vessel. The gas uptake rate of R22 gas from the vapor phase and the gas recovery rate from the hydrate were determined from hydrate formation and decomposition, respectively. The gas recovery rate of R22 gas gradually increased with time. On the contrary, the nitrogen gas recovery rate was a maximum in the initial stage of hydrate decomposition. A high separation factor (S.F.) was achieved by first separating the N2-rich gas generated during initial hydrate decomposition. An efficient hydrate-based gas separation and recovery process is proposed.  相似文献   
4.
The effects of the presence of Ga2O3 on low‐temperature sintering and the phase stability of 4, 5, and 6 mol% Sc2O3‐doped tetragonal zirconia ceramics (4ScSZ, 5ScSZ, and 6ScSZ, respectively) were investigated. A series of zirconia sintered bodies with compositions (ZrO2)0.99?x(Sc2O3)x(Ga2O3)0.01, x = 0.04, 0.05, and 0.06 was fabricated by sintering at 1000°C to 1500°C for 1 h using fine powders that were prepared via the combination of homogeneous precipitation method and hydrolysis technique using monoclinic zirconia sols synthesized through the forced hydrolysis of an aqueous solution of zirconium oxychloride at 100°C for 168 h. The presence of 1 mol% Ga2O3 was effective in reducing sintering temperature necessary to fabricate dense bodies and enabled to obtain dense sintered bodies via sintering at 1100°C for 1 h. The phase stability, that is, low‐temperature degradation behavior of the resultant zirconia ceramics was determined under hydrothermal condition. The zirconia ceramics codoped with 1 mol% Ga2O3 and 6 mol% Sc2O3 (1Ga6ScZ) fabricated via sintering at 1300°C for 1 h showed high phase stability without the appearance of monoclinic zirconia phase, that is the tetragonal‐to‐monoclinic phase transformation was not observed in the 1Ga6ScZ after treatment under hydrothermal condition at 150°C for 30 h.  相似文献   
5.
The dependence of silicon oxycarbides' chemical composition and molecular structure on their reaction conditions was tested by varying the atmosphere under which pyrolysis was performed. To obtain the silicon oxycarbides, densely cross‐linked silicone resin particles with an averaged diameter of 2 μm were pyrolyzed in various atmospheres of H2, Ar, and CO2, in the temperature range 700°C–1100°C. The residual mass of resin after pyrolysis was almost constant at 700°C, although their apparent colors varied distinctly. The sample obtained from the H2 atmosphere was white, whereas that obtained from the CO2 atmosphere was dark brown. Fourier‐transform infrared (FT‐IR) spectra of the residues suggested that the Si–O–Si network evolution was accelerated in the CO2 atmosphere. Beyond 800°C, the chemical compositions of the compounds obtained from a H2 atmosphere increasingly approached near‐stoichiometric SiO2xSiC composition with increasing the pyrolysis temperature. Compounds from a CO2 atmosphere approached a composition of SiO2xC with no free SiC as the pyrolysis temperature increased. In the products from an Ar atmosphere, SiO2xSiC–yC compositions were typically obtained. The observed effects of the pyrolysis atmosphere on the resulting chemical compositions were analyzed in terms of thermodynamic calculations. Electron spin resonance (ESR) spectra revealed broad and intense signals from products obtained from either Ar or CO2. Estimating from the signal intensity, the residual spin concentrations were in the range 1018–1019 g?1. Meanwhile, the spectra from the samples obtained in H2 showed weak and sharp signals with estimated spin concentrations ranging from 1016–1017 g?1. This signal attenuation may have been due to the hydrogen capping of dangling bond formed during pyrolysis.  相似文献   
6.
7.
Orientation anisotropy, which is well known in organic polymers with appropriate network structures, is less common in oxide glasses. We present the intermediate-range order in anisotropic alkali metaphosphate glass which consists of oriented PO4 tetrahedral chains and intervening alkali cations along the elongation direction. The X-ray total structure factor S(Q) indicates that the inter-chain spacing depends on the size of alkali cations and varies from 5.03 to 6.28 Å. The mixed alkali effect is primarily related to an increase of the separation. The total correlation function T(r) provides the first definite evidence that the anisotropic structure is composed of phosphorus-bridging oxygen bonds (P–OB) lying along the elongation direction and phosphorus-non-bridging oxygen bonds (P–OT) oriented perpendicular to the elongation direction. The present result unveils fundamental aspects of the anisotropic structure of an oxide glass and provides essential information for the development of oxide glasses to control structural anisotropy.  相似文献   
8.
We have investigated the adsorption of some amino acids and an oligopeptide by fullerene (C60) and fullerene nanowhiskers (FNWs). C60 and FNWs hardly adsorbed amino acids. Most of the amino acids used have a hydrophobic side chain. Ala and Val, with an alkyl chain, were not adsorbed by the C60 or FNWs. Trp, Phe and Pro, with a cyclic structure, were not adsorbed by them either. The aromatic group of C60 did not interact with the side chain. The carboxyl or amino group, with the frame structure of an amino acid, has a positive or negative charge in solution. It is likely that the C60 and FNWs would not prefer the charged carboxyl or amino group. Tri-Ala was adsorbed slightly by the C60 and FNWs. The carboxyl or amino group is not close to the center of the methyl group of Tri-Ala. One of the methyl groups in Tri-Ala would interact with the aromatic structure of the C60 and FNWs. We compared our results with the theoretical interaction of 20 bio-amino acids with C60. The theoretical simulations showed the bonding distance between C60 and an amino acid and the dissociation energy. The dissociation energy was shown to increase in the order, Val < Phe < Pro < Asp < Ala < Trp < Tyr < Arg < Leu. However, the simulation was not consistent with our experimental results. The adsorption of albumin (a protein) by C60 showed the effect on the side chains of Try and Trp. The structure of albumin was changed a little by C60. In our study Try and Tyr were hardly adsorbed by C60 and FNWs. These amino acids did not show a different adsorption behavior compared with other amino acids. The adsorptive behavior of mono-amino acids might be different from that of polypeptides.  相似文献   
9.
10.
Rice-gel prepared by the following three steps: rice grain cooking, shearing of the cooked rice, and cooling for gel formation, is expected as a novel food ingredient for modification of various food products such as bread and noodles. To meet the demand for high-throughput systems for research and developments on the new rice gels, herein we established a mini-cooking system for preparation of rice gel samples from grains using a small-scale viscosity analyzer (Rapid Visco Analyzer; RVA). Polished rice grains (4 g) were cooked with 22 mL of water in a canister, and the paddle equipped in the canister was rotated at 2,000 rpm for 30 min (80 °C was used as a representative) to shear the cooked rice. The sheared paste was cooled to 10 °C at 160 rpm, and the initial gelation property was evaluated by viscosity analysis within the RVA. Alternatively, the sheared paste was transferred to an acrylic mold and kept at 4 °C for 0, 1, 3, and 5 days for determination of the hardness with a compression test. Compressive forces required to penetrate 20 % thickness for three tested rice cultivars were measured, and the trend of the value shifts during preservation is similar to the corresponding trend obtained in 300-g grain scale laboratory tests, whereas the individual values were halved in the former. This small cooking method could offer a useful assay system for a rapid evaluation in the breeding programs and in the high-throughput screening of additives for the modification of properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号