首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
响应面优化超声辅助提取刺梨多糖工艺研究   总被引:2,自引:0,他引:2  
探讨超声波作用下刺梨多糖提取的最佳工艺条件。在单因素试验基础上,采用响应面法对刺梨多糖提取工艺参数进行优化研究。响应面试验表明提取温度、超声功率、超声时间、液料比对响应值刺梨多糖提取率均有显著影响,优化得到超声辅助提取刺梨多糖最佳工艺条件为:超声时间30 min,超声功率120 W,液料比40m L/g,提取温度80℃,提取3次。在此条件下的刺梨多糖提取率可达2.18%,与模型预测值非常接近。  相似文献   

2.
目的:采用响应曲面法对影响苦参多糖提取率的主要影响因素超声时间、超声功率和水料比进行优化。方法:采用超声法提取苦参多糖,以Box-Behnke响应面法优化苦参多糖的超声提取工艺条件,并进行预测分析。结果:Design Expert软件分析表明:苦参多糖提取在超声功率617.19W、超声时间22.45min、水料比27.25:1(m L:g)的最佳工艺条件下,提取率达到8.92%,实测结果与响应面拟和所得方程的预测值符合良好。结论:Box-Behnken响应面法应用于优化苦参多糖超声提取工艺是可行的,建立的数学模型和实验观察数据相符。  相似文献   

3.
为确定香菇多糖的最佳提取工艺,利用响应面分析法对香菇多糖的提取工艺进行优化。在单因素实验的基础上,以超声时间、超声功率、浸提温度和浸提时间为响应因素,多糖提取得率为响应值,根据正交旋转组合试验设计原理进行四因素三水平的响应面分析。实验结果表明,采用超声功率174.94 W,超声时间为18.94min,在80.71℃下提取3.01 h,得到的香菇多糖提取率最高,为9.61%。当香菇多糖的浓度为3 mg/mL,其·OH清除率为52.1%。  相似文献   

4.
以新郑红枣为原料,利用响应面法优化超声波提取红枣多糖工艺。以红枣多糖的提取率为参考指标,研究料液比、提取次数、提取时间3个因素对红枣多糖提取率的影响。在单因素试验的基础上,利用Box-Behnken中心组合试验设计及响应面分析,对料液比、提取次数和提取时间进行优化组合,考察3个因素对红枣多糖提取率的影响。结果表明:提取红枣多糖的最佳工艺条件为液料比16∶1(m L/g)、提取次数2次、提取时间38 min,在此最佳条件下,红枣多糖的实际提取率为7.25%;证明此工艺可应用于红枣多糖的大规模提取。  相似文献   

5.
利用响应面法优化金刷把多糖的提取工艺。在单因素试验的基础上,选择提取温度、提取时间、料液比为自变量,以多糖提取率为响应值,进行Box-Benhnken中心组合实验设计,应用响应曲面分析方法优化提取条件,得到金刷把多糖最佳提取工艺条件如下:提取温度95℃,提取时间2.5 h,料液比1∶20 g/m L,此时金刷把多糖提取率的理论预测值为4.62%,最优条件下多糖得率的实验值为4.42%,与理论值的相对误差为4.3%。经过响应面法优化提取工艺,提高了提取率,适用于金刷把粗多糖的提取。  相似文献   

6.
本研究利用响应面法优化桑葚多糖的超声波辅助提取工艺条件;选定提取温度、时间及水料比作为影响因素,以桑葚多糖提取率为评价指标,在单因素实验的基础上,通过3因素3水平Box-Behnken中心组合试验建立多糖提取率的二次多项式回归方程,研究超声提取时间、温度、水料比对桑葚多糖提取率的影响;结果显示最佳提取工艺条件为提取温度72℃、超声时间23.5 min、水料比27∶1(v∶m,mL/g),在该条件下多糖提取率预测值为17.80%,验证值为17.78±0.85%(n=3);此方法与传统水提取法相比具有省时、高效的优点,为桑葚多糖的后续研发提供实验基础。  相似文献   

7.
目的:为优化软枣猕猴桃果实多糖的超声辅助离子液体提取工艺,并评价抗氧化活性。方法:采用单因素和响应面试验探究最佳提取工艺,测定DPPH自由基(DPPH·)和羟自由基(·OH)清除能力以及总还原能力。结果:确定最佳提取工艺为:[BMIM]Br的浓度为0.5 mol/L,液料比35:1(mL/g),超声功率为350 W,超声时间为70 min,该条件下软枣猕猴桃果实多糖的提取率为3.52%。去除DPPH·的能力为:SPS60>SPS30>SPS,去除·OH的能力为:SPS60>SPS30>SPS,并且SPS60的总还原能力高于SPS30和SPS。结论:SPS60具有更强的体外抗氧化能力,开发前景广阔。  相似文献   

8.
响应面优化绿穗苋多糖的提取工艺   总被引:1,自引:0,他引:1  
本研究旨在对热水工艺提取绿穗苋多糖的条件进行优化。在单因素实验基础上,筛选得到三个主要对绿穗苋多糖提取率相关的因素,其分别为:提取料液比、提取时间和提取温度。采用响应面试验设计软件,以提取料液比、提取时间和提取温度3因素作为试验的自变量,绿穗苋多糖提取率作为因变量,运用Box-Behnken实验设计和响应面分析法,得到了热水提取绿穗苋多糖工艺的最佳条件:料液比1:42.08(g/mL),提取温度92.30℃,提取时间219.01 min有最大多糖提取率。提取率为16.68%,与试验模型预测提取率为16.81%相近。本研究对绿穗苋多糖提取优化的研究为进一步探讨绿穗苋多糖生物活性的的研究提供了材料基础。  相似文献   

9.
为了研究超声波辅助提取柴胡多糖的过程中超声波对柴胡多糖的提取率及外观形貌、生物活性的影响,在单因素(超声波功率、超声波作用时间、料液比)的基础上,通过正交实验确定超声波辅助提取最佳工艺条件,并与传统提取方法所得到的结果进行了比较:利用原子力显微镜(AFM)研究超声波作用对柴胡多糖的形貌特征的影响;用邻二氮菲-金属铁离子-H2O2体系检测柴胡多糖对羟基自由基的清除作用。实验结果表明:超声波辅助提取的最佳提取条件为超声功率360W,超声时间15min,料液比1:35,水浴温度90℃,水浴时间1h,提取率为2.58%.所获得的柴胡多糖(SBR)的纯度为44.14%,与传统提取方法相比.不仅节约了时间,而且提高了提取效率。原子力显微镜观察的结果表明,柴胡多糖分子主要以螺旋结构形态存在,超声波作用使得柴胡多糖的分子降解成较小的分子片段。柴胡多糖能有效清除羟自由基,在相同浓度下SBP。的清除效果要优于水提柴胡粗多糖(WBP0),且质量浓度在80~100ug/mL的范围清除效果最佳,并高于同浓度下抗坏血酸的清除效果。  相似文献   

10.
响应面法优化微波辅助提取发酵虫草菌丝体多糖工艺   总被引:1,自引:1,他引:0  
为优化发酵虫草菌粉多糖的微波辅助提取工艺,在单因素实验基础上,以液固比、微波功率以及提取时间为自变量,多糖提取率为响应值,采用中心组合设计的方法,研究各自变量及其交互作用对多糖提取率的影响。利用SAS软件和响应面分析相结合的方法对发酵虫草菌粉多糖的微波辅助提取工艺进行优化,确定了微波辅助提取多糖的最佳条件:液固比值12.2,微波功率650.5W,提取时间11.8min,在此条件下,多糖提取率达到6.41%。采用此法提取的虫草菌丝体多糖,当质量浓度为1mg/mL时,对二苯代苦味肼基自由基(DPPH)清除率达到76%。  相似文献   

11.
为探究先后提取枸杞多糖及枸杞色素时对各自得率的影响。本研究通过分别考察这两种成分在提取过程中的提取溶剂、提取温度、料液比、提取次数及提取时间等因素对枸杞色素和枸杞多糖的得率影响,确定枸杞色素和枸杞多糖在提取次序不同时,两者的最佳提取工艺以及对DPPH·和·OH自由基清除率。结果表明,首先提取枸杞多糖后,枸杞色素的最佳提取工艺为采用正己烷,80℃时,料液比1∶10,提取2次,每次1 h,枸杞色素得率为2.48%,此时枸杞多糖得率为7.45%;而首先提取枸杞色素后,采用了超声辅助提取的方式提取枸杞多糖,发现超声效率为25%,料液比1∶10,提取20 min,枸杞多糖得率为5.23%,此时枸杞色素得率为3.93%。因此,首先提取枸杞多糖,使其平均得率为7.45%,而后提取枸杞色素,其平均得率为2.48%;总体上,枸杞色素1和枸杞多糖1对DPPH·自由基清除率都较高,枸杞多糖1对·OH自由基清除率较高,其抗氧化活性都接近Vc。  相似文献   

12.
以塔拉(Caesalpinia spinosa)种子为原料,研究了塔拉种子多糖的脱蛋白工艺及塔拉多糖的抗氧化性质。以多糖损失率和蛋白脱除率为评价指标,比较Sevage法、三氯乙酸法和木瓜蛋白酶法对塔拉多糖的脱蛋白效果。利用正交优化组合实验设计原理,采用四因素三水平的正交分析法,对木瓜蛋白酶法脱蛋白进行正交优化。结果表明:塔拉多糖最佳脱蛋白工艺条件为酶添加量0.15mL、酶解时间90min、酶解温度60℃、酶解pH=6,蛋白脱除率95.19%,多糖保留率75.02%。通过对塔拉多糖抗氧化性的研究,发现塔拉多糖总抗氧化性较好,对DPPH自由基有较强的清除作用。  相似文献   

13.
为优化雪松松针多糖超声波酶法的提取工艺,并研究多糖结构及其抗氧化性。通过响应面法分析确定最佳提取参数为:3. 0 g松针粉末,液料比20∶1(m L∶g),提取温度80℃,超声功率560 W,超声时间47 min,纤维素酶用量12 FPU/g原料,提取两次,多糖得率高达10. 39%。采用高效液相色谱、红外光谱和核磁共振光谱等对松针多糖进行了结构表征,松针多糖以β-糖苷键为主要连接方式,并由葡萄糖、果糖、阿拉伯糖和半乳糖等单糖组成。体外抗氧化性研究结果表明:松针粗多糖对羟基自由基(·OH)和1,1-二苯基-2-三硝基苯肼自由基(DPPH·)的清除能力远高于纯化多糖,呈现出良好的量效关系,粗多糖对·OH和DPPH·的半抑制浓度IC50分别为0. 47 g/L和0. 076 g/L。  相似文献   

14.
研究石耳属地衣Umbilicaria muehlenbergii多糖的提取工艺及其体外抗氧化、抗肿瘤能力.在单因素试验基础上,通过Box-Behnken design(BBD)和响应面分析法优化得出热水浸提法提取U.muehlenbergii多糖的最佳工艺条件.通过测定地衣多糖对1,1-二苯基-2-苦肼基自由基(1,1...  相似文献   

15.
为利用红托竹荪菌托,采用酶解法提取菌托多糖,优化多糖提取工艺,并测定多糖分子量、单糖组成、抗氧化及降血糖活性。结果表明,最佳酶解法提取工艺为纤维素酶2.5%、果胶酶0.4%、木瓜蛋白酶1.5%,50 ℃酶解1 h,料液比1:60、提取温度80 ℃、时间3 h,该条件下多糖提取率达15.37%,比热水浸提法提高39.60%。酶解法多糖分子量为3 344 Da (Mn)、522 208 Da (Mw)、2 929 Da (Mp),主要由葡萄糖、甘露糖、葡萄糖醛酸、半乳糖和岩藻糖等组成,葡萄糖占最高,达48.82%。菌托多糖为2.0 mg/mL时,DPPH·清除率为93.83%,Fe3+还原能力为0.140 7,α-葡萄糖苷酶活性抑制率为54.62%、α-淀粉酶活性抑制率为56.45%,与热水浸提法相比差异极显著或显著。酶解法提取红托竹荪菌托多糖,提取率较高,具有较高的抗氧化、降血糖活性,具有推广应用价值。  相似文献   

16.
通过响应面法优化提取发酵麸皮多糖的工艺,并评价其体外益生和抗氧化活性。以发酵麸皮多糖的得率为响应值,采用纤维素酶酶解与水浴浸提相结合的方法提取发酵麸皮多糖,以纤维素酶添加量、料液比、水浴浸提温度、水浴浸提时间为试验因素建立数学模型,筛选最佳提取工艺条件。通过测定还原力、DPPH和·OH自由基的清除能力对比发酵和未发酵麸皮多糖的体外抗氧化活性,并通过测定嗜酸乳杆菌、植物乳杆菌、两歧双歧杆菌的生长对比发酵和未发酵麸皮多糖的体外益生活性。结果表明,发酵麸皮多糖最佳提取工艺为:料液比1∶16(w/v),酶添加量1 000 U/g,水浴浸提温度90℃,水浴浸提时间60 min,在此条件下发酵麸皮多糖的得率实测值为73. 35%。发酵麸皮多糖具有较强的DPPH和·OH自由基的清除能力,可促进嗜酸乳杆菌、植物乳杆菌和两歧双歧杆菌的生长。  相似文献   

17.
奶油栓孔菌Trametes lactinea是一种生物活性丰富的大型真菌。本研究在单因素试验的基础上,通过响应面法优化其菌丝体多糖的提取工艺,利用DEAE-Cellulose-52阴离子交换柱和Sephadex G-200层析柱对粗多糖进行分离纯化,获得TLMPS-0、TLMPS-1和TLMPS-3均一多糖组分。采用化学组成分析、UV-vis、FTIR、刚果红实验对3种多糖组分进行结构分析,并检测了多糖清除自由基的能力和还原力。结果表明,奶油栓孔菌菌丝体多糖最优提取工艺为:提取温度99℃、料液比1:30 (g/mL)、提取时间5h,提取次数2次。在此工艺条件下,多糖提取率为4.01%。TLMPS-0、TLMPS-1和TLMPS-3的糖醛酸含量分别为12.91%±0.44%、8.24%±0.22%、7.50%±0.66%,硫酸基含量分别为22.24%±1.88%、14.55%±0.56%、18.68%±0.69%,并且证明TLMPS-0是一种α-吡喃型多糖或β-吡喃型多糖,而TLMPS-1是一种β-吡喃型多糖,均不具备三螺旋空间构象,此外,3种多糖组分均具有一定的清除DPPH自由基、ABTS自由基、羟基自由基的能力和铁离子还原能力,其中TLMPS-0抗氧化活性最强。研究结果为奶油栓孔菌多糖的功能研究与挖掘提供了研究基础与理论依据。  相似文献   

18.
为了进一步提高大枣多糖的提取效率,本文通过正交试验优化了超声波法提取大枣多糖的工艺条件。考察的因素包括料液比、超声功率、超声时间和浸提温度。结果显示超声波法提取大枣多糖的最佳提取工艺条件为:料液比1∶30、超声功率80W、超声时间10min,浸提温度80℃。在此工艺条件下大枣多糖的提取率达到6.97%。该工艺条件下提取率较高,因此适合于提取大枣中的多糖类化合物。  相似文献   

19.
Polysaccharides were extracted from Asparagus officinalis. A novel ultrasonic circulating extraction (UCE) technology was applied for the polysaccharide extraction. Three-factor-three-level Box-Behnken design was employed to optimize ultrasonic power, extraction time and the liquid-solid ratio to obtain a high polysaccharide yield. The optimal extraction conditions were as follows: ultrasonic power was 600 W, extraction time was 46 min, the liquid-solid ratio was 35 mL/g. Under these conditions, the experimental yield of polysaccharides was 3.134%, which was agreed closely to the predicted value. The average molecular weight of A. officinalis polysaccharide was about 6.18 × 104 Da. The polysaccharides were composed of glucose, fucose, arabinose, galactose and rhamnose in a ratio of 2.18:1.86:1.50:0.98:1.53. Compared with hot water extraction (HWE), UCE showed time-saving, higher yield and no influence on the structure of asparagus polysaccharides. The results indicated that ultrasonic circulating extraction technology could be an effective and advisable technique for the large scale production of plant polysaccharides.  相似文献   

20.
An ultrasonic-assisted procedure for the extraction of polysaccharides from the fruiting body of Hohenbuehelia serotina was investigated using response surface methodology. The effects of four factors on the yield of polysaccharides were studied. The optimized conditions were extraction temperature 94°C, extraction time 3.0h, ratio of water to raw material 110:1 and ultrasonic power 480W. Under these conditions, the experimental yield of polysaccharides was 17.45±0.18%, which was well matched with the predictive yield of 17.54%. The molecular weight of polysaccharide was ranged from 1.19×10(3) to 1.55×10(4)Da. The polysaccharides were composed of ribose, arabinose, mannose, glucose and galactose in a ratio of 0.65:0.69:9.35:14.24:5.47. Then, the structural features of untreated materials, hot water extraction residue and ultrasonic-assisted extraction residue were compared by SEM. Results indicated that ultrasonic-assisted extraction technology could be an effective and advisable technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号