首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
复合酶解法优化黄精多糖提取工艺   总被引:2,自引:0,他引:2       下载免费PDF全文
采用复合酶解法优化黄精多糖提取工艺,苯酚-浓硫酸显色法测定黄精多糖质量浓度,以黄精多糖提取率为指标,对复合酶种类和配比进行筛选后,在单因素试验基础上,考察酶解温度、pH、料液比、加酶量对提取率的影响,并通过正交试验进行优化。结果表明,复合酶提取优于单酶提取和普通水提。酶用量配比为纤维素酶:木瓜蛋白酶=3∶7。酶解最佳条件为:pH值5.0,酶解温度50℃,料液比(g/mL)1∶20,加酶量1.5 g/dL,即纤维素酶0.45 g/dL,木瓜蛋白酶1.05 g/dL,酶解2 h后,沸水浸提2 h。在此工艺条件下,黄精多糖提取率可达21.55%,是普通水提法得率的2.75倍,比单酶水解高出12.06%。  相似文献   

2.
超声波协同复合酶法提取南瓜多糖工艺优化   总被引:1,自引:0,他引:1  
利用超声波协同复合酶法以南瓜为材料提取多糖,将超声波提取与复合酶法提取两种独立的提取方法进行协同作用,结果如下:在酶解的同时辅助超声波提取为最佳协同方式;适宜酶的比例分别为果胶酶42U/g、木瓜蛋白酶200U/g、纤维素酶40U/g;响应面法优化超声波协同复合酶法提取南瓜多糖最佳工艺技术参数为温度51.5℃、功率440W、液料比7:1(mL/g)、pH4.4,在此条件下,南瓜多糖的得率为4.39%。  相似文献   

3.
以漳平水仙饼茶为原料,多糖得率为指标,先采用正交试验确定复合酶最佳配比,进而在单因素试验基础上,利用Plackett-Burman试验设计筛选影响多糖得率的显著因素,再结合Design-Expert7.1.3软件中Box-Behnken中心组合设计原理进行响应面回归分析优化。结果表明:果胶酶、木瓜蛋白酶和纤维素酶的最佳活力单位配比为:15∶10∶18;酶解pH对提取漳平水仙饼茶多糖达到极显著效应,加酶量、酶解温度达到显著水平;最佳工艺参数为液料体积质量比为80 m L∶1 g,加酶量3.0%,酶解温度49℃,酶解pH为6.0,酶解时间90 min,在此条件下,水仙饼茶多糖得率为4.26%。  相似文献   

4.
陈艳  姚密  李美凤  孟晓  冉旭 《中国酿造》2017,36(10):139
以松茸多糖得率为评价指标,采用单因素试验和正交试验,确定最佳提取工艺参数。结果表明,超声波提取优化工艺条件为超声温度90 ℃,料液比1∶15(g∶mL),超声时间10 min。在此最佳超声提取条件下松茸多糖得率为11.18%。在超声波优化结果的基础上,进行复合酶处理,最佳酶解工艺参数为酶解温度50 ℃,酶解时间60 min,复合酶(木瓜蛋白酶∶纤维素酶∶果胶酶为1∶1∶1)添加量4.0%,酶解pH值6.0,此优化条件下松茸多糖得率为19.56%。复合酶超声辅助法比超声波法提取松茸多糖提高了8.38%。结果表明,复合酶超声辅助提取法提取松茸多糖是一种科学有效的方法,可显著提高松茸多糖得率。  相似文献   

5.
利用新鲜大蒜为材料提取多糖,研究了热水浸提法、复合酶法、超声波法、超声辅助复合酶法等方法和不同酶对大蒜多糖得率的影响。结果表明:在酶解的同时辅助超声波提取为最佳提取方式。通过正交试验优化复合酶配比,适宜的酶用量分别为果胶酶22.5U/g、木瓜蛋白酶160U/g、纤维素酶96U/g,在此条件下,大蒜多糖的得率为25.798%。与传统热水提取法相比,有得率高、用时短的特点。  相似文献   

6.
超声波辅助复合酶法提取姜油的工艺优化   总被引:2,自引:0,他引:2  
为了获得一种得率较高的姜油提取方法,试验采用超声波辅助复合酶法,以生姜粉为原料,对复合酶的配比、酶解过程及超声萃取过程进行了优化.结果表明:适宜的酶配比为纤维素酶400 U/g,木瓜蛋白酶400U/g,果胶酶300 U/g;响应面设计优化酶解过程的最佳工艺参数为pH值5.58,液料比5.5∶1,温度46.8℃,时间46 min;适宜的超声萃取工艺参数为以乙醇为提取剂,液料比15∶1,超声功率440W,超声时间15 min时,最终姜油得率可达6.72%,与传统的方法相比姜油得率明显提高.  相似文献   

7.
为了研究纤维素酶、果胶酶、木瓜蛋白酶及α-淀粉酶组成的复合酶提取姜多糖最佳工艺条件,以姜粉为原料,多糖提取率为指标,确定最佳的酶配比和提取条件,即纤维素酶、果胶酶、木瓜蛋白酶及α-淀粉酶用量分别为1.5%、1%、2%、2.5%,料液比1∶25(g/mL)、pH5.2、温度55℃、时间60 min时,姜多糖提取率最高,达22.18%,纯度为58.26%。  相似文献   

8.
为了获得复合酶法提取红雪茶粗多糖的最佳工艺,采用单因素实验和正交实验,研究了不同料液比、pH、酶解温度、提取时间和不同复合酶配比对红雪茶粗多糖提取率的影响;在此基础上采用L9(34)正交实验研究了各影响因素对红雪茶粗多糖提取率的影响,结果表明复合酶最佳配比为纤维素酶2.0%,果胶酶2.0%,木瓜蛋白酶0.5%;影响红雪茶粗多糖提取率的四个因素的主次顺序为:料液比>酶解温度>pH>酶解时间;最佳提取工艺条件是料液比1:40,pH4.5,酶解温度40℃,酶解时间80min,在此条件下红雪茶多糖提取率达8.91%。本研究确定了复合酶法提取红雪茶多糖的最佳工艺。  相似文献   

9.
该试验研究复合酶协同超高压法提取黑木耳多糖最佳工艺条件。以黑木耳多糖得率为指标,采用单因素试验和正交试验,确定最佳提取工艺参数。结果表明,复合酶提取最佳工艺参数为酶解时间50 min,复合酶(纤维素酶∶木瓜蛋白酶=1∶1,质量比)添加量3%,酶解温度50℃,酶解pH值6.5。在此条件下,黑木耳多糖得率为9.26%。经复合酶法优化后,再进行超高压法提取,最佳工艺参数为保压时间8 min,提取温度50℃,压力400 MPa,料液比1∶30(g/mL)。在此条件下,黑木耳多糖得率为12.23%。  相似文献   

10.
优化复合酶(纤维素酶-果胶酶-木瓜蛋白酶)提取石榴幼果总黄酮的工艺,并测定其抑制α-葡萄糖苷酶活性。以总黄酮得率为评价指标,在单因素实验基础上,D-最优混料设计优化复合酶配比,正交试验设计对料液比、介质pH、酶解温度、酶解时间进行优化,并以PNPG为底物测定总黄酮对α-葡萄糖苷酶的抑制活性。结果显示:复合酶最优配比为:纤维素酶44.2%、果胶酶31.6%、木瓜蛋白酶24.2%,最佳提取条件为:料液比1∶18 (g/mL)、介质pH5.0、酶解温度50℃、酶解时间4.0 h,总黄酮得率为3.38%,其浓度为1.5 mg/mL时,对α-葡萄糖苷酶抑制率达到63.9%,抑制作用的IC_(50)为1.059 mg/mL,在浓度0.15~1.5 mg/mL范围内,石榴幼果总黄酮浓度与其对α-葡萄糖苷酶抑制效果之间呈现一定的正相关关系,其抑制机理属于可逆性抑制和非竞争性抑制。该方法可为石榴幼果总黄酮的提取和应用提供一定的科学依据。  相似文献   

11.
酶法提取怀菊花总黄酮工艺研究   总被引:1,自引:0,他引:1  
用正交实验确定酶法提取怀菊花总黄酮的最佳提取工艺条件为:料液比为1∶ 10,酶解温度45 ℃,pH=6.2,纤维素酶用量0.25 g/L,果胶酶用量0.3 g/L,酶解时间150 min,浸提时间60 min,浸提液体积40 mL.在此条件下怀菊花总黄酮的得率可达6.83%.  相似文献   

12.
以恰玛古多糖得率为指标,在超声提取及复合酶酶解单因素实验基础上,采用响应面法探究超声协同复合酶分步提取恰玛古多糖的最佳工艺条件。结果表明,超声协同复合酶分步提取恰玛古多糖的最佳提取工艺为:液料比33:1 mL/g,超声温度62℃,超声功率250 W,超声提取43 min后加入2.5%的复合酶(纤维素酶:木瓜蛋白酶:果胶酶=1:1:1,质量比),酶解pH5.4,酶解温度50℃,酶解时间52 min,在此条件下,恰玛古多糖得率为12.62%±0.18%。超声协同复合酶提取恰玛古多糖的得率较高,且工艺简便易行,适用于恰玛古多糖的提取。  相似文献   

13.
采用单因子分析和正交试验,以桑黄菌丝体提取物中多糖得率为指标,对超声波复合酶法中影响多糖提取效果的主要因素进行研究。结果表明:超声波提取优化工艺条件为超声处理时间20min、料液比1:25(g/mL)、功率500W,在此基础上提取多糖得率为3.356%,在超声波优化结果基础上,进一步进行复合酶法处理,酶解最佳提取条件是pH6.5,酶解温度50℃,纤维素酶添加量2.5%、果胶酶添加量2.5%、蛋白酶添加量1%,酶解时间120min,多糖得率为6.619%,由此可见,超声波和复合酶法双重处理提取桑黄多糖是一种有效的提取方法,适合大规模生产运用。  相似文献   

14.
以枸杞为试验材料,研究了超声波辅助复合酶(脂肪酶/蛋白酶/纤维素酶/果胶酶=1:1:1:1)提取枸杞多糖的工艺条件。以枸杞多糖得率为评价指标,通过正交试验确定了最佳提取条件为料液比1∶40(g∶mL),提取温度50 ℃,超声时间50 min,复合酶添加量0.5%。在此最佳条件下,枸杞多糖平均得率为58.910%。  相似文献   

15.
优化复合酶提取昆布多糖的工艺参数,并考察其抑制α-葡萄糖苷酶的能力。以昆布多糖得率为评价指标,通过正交试验确定复合酶配比,采用响应面法评价酶解时间、pH、液料比和温度对昆布多糖得率的影响。采用体外酶抑制实验测定昆布多糖对α-葡萄糖苷酶的抑制活性。结果表明,复合酶最佳添加量为纤维素酶100 mg、果胶酶90 mg、木瓜蛋白酶55 mg,最佳酶法提取工艺为酶解时间1.8 h、酶解温度49.4℃、pH6.1、液料比59:1 mL/g,最佳工艺条件下昆布多糖预测得率18.183%,实测多糖得率18.19%±1.04%,其中性糖、酸性糖、蛋白质及硫酸根含量分别52.72%、11.76%、2.66%、19.49%;在1~5 mg/mL范围内其对α-葡萄糖苷酶的抑制作用随浓度增加而升高,最大抑制率为79.04%±3.17%,IC50为1.443 mg/mL。复合酶法提取的昆布多糖得率高,其对α-葡萄糖苷酶具有明显的抑制作用。  相似文献   

16.
为优化鸡腿菇多糖的提取工艺,采用木瓜蛋白酶与纤维素酶复合处理,通过单因素试验研究了液料比、复合酶添加量、木瓜蛋白酶与纤维素酶质量比、酶解温度、pH值和提取时间对鸡腿菇多糖得率的影响。在单因素试验的基础上,采用Box-Benhnken中心组合试验设计,建立了具有较好预测性能的鸡腿菇多糖提取条件的回归模型,获得了复合酶法提取鸡腿菇多糖的最佳工艺,即酶解温度51.4℃、酶解pH值5.2、木瓜蛋白酶与纤维素酶质量比0.86,在此条件下鸡腿菇多糖得率可达6.42%。  相似文献   

17.
刘媛洁  张良 《食品工业科技》2019,40(23):143-150
本研究以马家柚柚子皮为研究对象,采用复合酶法辅助超声波法优化了柚子皮中总黄酮的提取工艺。首先研究复合酶(纤维素酶:果胶酶)的配比、复合酶的用量、pH、料液比、酶解温度、酶解时间、超声功率和超声时间共8个要素因子对柚子皮中总黄酮得率的影响。在此基础上,先选用Plackett-Burnman试验设计确定了具有显著性影响的因子为:复合酶的用量、酶解温度、超声功率和超声时间,再选用Box-Behnken试验设计优化了柚子皮中的总黄酮提取条件。结果表明,酶法辅助超声波法提取柚子皮中总黄酮的提取条件为:复合酶的配比(纤维素酶:果胶酶)为3:2、复合酶的用量1.70%、pH4.5、料液比1:20 g/mL、酶解温度55.0℃、酶解时间60 min、超声功率183.00 W、超声时间41.00 min,在此条件下柚子皮中总黄酮得率为2.19%。  相似文献   

18.
探讨应用复合酶法提取石榴籽多糖的最佳工艺条件。以多糖得率为考察指标,在单因素试验基础上,通过D-最优混料试验设计优化复合酶配比,Box-Behnken试验设计优化得出影响因素的最佳参数水平,进而得出最佳工艺条件。结果显示:复合酶最优配比为果胶酶24.2%、纤维素酶67.2%、甘露聚糖酶8.6%;并以此参数为基础,得到复合酶法提取石榴籽多糖的最佳工艺条件为液固比20∶1(mL/g)、介质pH 4.5、酶解温度48.5 ℃、酶解时间287 min,在此条件下,石榴籽多糖得率为2.83%。  相似文献   

19.
探讨复合酶法提取铁皮石斛多糖的最佳工艺以及酶解多糖的抗氧化活性。利用单因素及L18(37)正交实验研究了酶配比、酶浓度、酶解温度、酶解时间、料液比及pH对多糖得率的影响,并通过清除DPPH、ABTS自由基研究酶解多糖的抗氧化活性。结果显示酶解最优条件:中性蛋白酶与纤维素酶比例为2:1,酶浓度为10%,料液比为1:120,酶解温度为55 ℃,pH6.0,酶解时间为3 h,在此条件下多糖得率为43.85%±1.8%;酶解多糖对DPPH、ABTS自由基的IC50分别为1.331、0.467 mg/mL,说明酶解石斛多糖具有较好的抗氧化活性。  相似文献   

20.
超声辅助复合酶法提取桑黄多糖   总被引:2,自引:1,他引:1  
探索超声辅助复合酶法提取桑黄多糖的最佳工艺。以多糖提取收率为指标,对超声时间、复合酶用量、作用时间、酶解温度及pH进行单因素试验研究。结果表明:超声辅助复合酶法提取桑黄多糖的最佳条件为超声时间300s、固定pH 4.0,应用2.0%的木瓜蛋白酶、果胶酶和纤维素酶50℃酶解90min后,多糖得率可达1.46%。该提取工艺多糖提取收率高,可应用于实际生产。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号