首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
RATIONALE AND OBJECTIVES: Recent developments of magnetic resonance imaging enabled free-breathing coronary MRA (cMRA) using steady-state-free-precession (SSFP) for endogenous contrast. The purpose of this study was a systematic comparison of SSFP cMRA with standard T2-prepared gradient-echo and spiral cMRA. METHODS: Navigator-gated free-breathing T2-prepared SSFP-, T2-prepared gradient-echo- and T2-prepared spiral cMRA was performed in 18 healthy swine (45-68 kg body-weight). Image quality was investigated subjectively and signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and vessel sharpness were compared. RESULTS: SSFP cMRA allowed for high quality cMRA during free breathing with substantial improvements in SNR, CNR and vessel sharpness when compared with standard T2-prepared gradient-echo imaging. Spiral imaging demonstrated the highest SNR while image quality score and vessel definition was best for SSFP imaging. CONCLUSION: Navigator-gated free-breathing T2-prepared SSFP cMRA is a promising new imaging approach for high signal and high contrast imaging of the coronary arteries with improved vessel border definition.  相似文献   

2.
The impact of radial k-space sampling and water-selective excitation on a novel navigator-gated cardiac-triggered slab-selective inversion prepared 3D steady-state free-precession (SSFP) renal MR angiography (MRA) sequence was investigated. Renal MRA was performed on a 1.5-T MR system using three inversion prepared SSFP approaches: Cartesian (TR/TE: 5.7/2.8 ms, FA: 85 degrees), radial (TR/TE: 5.5/2.7 ms, FA: 85 degrees) SSFP, and radial SSFP combined with water-selective excitation (TR/TE: 9.9/4.9 ms, FA: 85 degrees). Radial data acquisition lead to significantly reduced motion artifacts (P < 0.05). SNR and CNR were best using Cartesian SSFP (P < 0.05). Vessel sharpness and vessel length were comparable in all sequences. The addition of a water-selective excitation could not improve image quality. In conclusion, radial k-space sampling reduces motion artifacts significantly in slab-selective inversion prepared renal MRA, while SNR and CNR are decreased. The addition of water-selective excitation could not improve the lower CNR in radial scanning.  相似文献   

3.
The purpose of this study was to prospectively compare free-breathing navigator-gated cardiac-triggered three-dimensional steady-state free precession (SSFP) spin-labeling coronary magnetic resonance (MR) angiography performed by using Cartesian k-space sampling with that performed by using radial k-space sampling. A new dedicated placement of the two-dimensional selective labeling pulse and an individually adjusted labeling delay time approved by the institutional review board were used. In 14 volunteers (eight men, six women; mean age, 28.8 years) who gave informed consent, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), vessel sharpness, vessel length, and subjective image quality were investigated. Differences between groups were analyzed with nonparametric tests (Wilcoxon, Pearson chi2). Radial imaging, as compared with Cartesian imaging, resulted in a significant reduction in the severity of motion artifacts, as well as an increase in SNR (26.9 vs 12.0, P < .05) in the coronary arteries and CNR (23.1 vs 8.8, P < .05) between the coronary arteries and the myocardium. A tendency toward improved vessel sharpness and vessel length was also found with radial imaging. Radial SSFP imaging is a promising technique for spin-labeling coronary MR angiography.  相似文献   

4.
PURPOSE: To evaluate gadocoletic acid (B-22956), a gadolinium-based paramagnetic blood pool agent, for contrast-enhanced coronary magnetic resonance angiography (MRA) in a Phase I clinical trial, and to compare the findings with those obtained using a standard noncontrast T2 preparation sequence. MATERIALS AND METHODS: The left coronary system was imaged in 12 healthy volunteers before B-22956 application and 5 (N = 11) and 45 (N = 7) minutes after application of 0.075 mmol/kg of body weight (BW) of B-22956. Additionally, imaging of the right coronary system was performed 23 minutes after B-22956 application (N = 6). A three-dimensional gradient echo sequence with T2 preparation (precontrast) or inversion recovery (IR) pulse (postcontrast) with real-time navigator correction was used. Assessment of the left and right coronary systems was performed qualitatively (a 4-point visual score for image quality) and quantitatively in terms of signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), vessel sharpness, visible vessel length, maximal luminal diameter, and the number of visible side branches. RESULTS: Significant (P < 0.01) increases in SNR (+42%) and CNR (+86%) were noted five minutes after B-22956 application, compared to precontrast T2 preparation values. A significant increase in CNR (+40%, P < 0.05) was also noted 45 minutes postcontrast. Vessels (left anterior descending artery (LAD), left coronary circumflex (LCx), and right coronary artery (RCA)) were also significantly (P < 0.05) sharper on postcontrast images. Significant increases in vessel length were noted for the LAD (P < 0.05) and LCx and RCA (both P < 0.01), while significantly more side branches were noted for the LAD and RCA (both P < 0.05) when compared to precontrast T2 preparation values. CONCLUSION: The use of the intravascular contrast agent B-22956 substantially improves both objective and subjective parameters of image quality on high-resolution three-dimensional coronary MRA. The increase in SNR, CNR, and vessel sharpness minimizes current limitations of coronary artery visualization with high-resolution coronary MRA.  相似文献   

5.
PURPOSE: To compare radial and spiral k-space sampling in navigator-gated ECG-triggered three-dimensional (3D) coronary vessel wall imaging. MATERIALS AND METHODS: The right coronary artery (RCA) vessel walls of eight healthy subjects were imaged using a modified double-inversion prepulse in concert with radial and spiral data acquisition. For data analysis, two investigators blinded to the sequence parameters subjectively assessed image quality in terms of artifacts and vessel wall visualization. Objective measures of the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and vessel wall definition were also determined. RESULTS: Radial k-space sampling demonstrated fewer artifacts and led to improved visualization of the coronary vessel wall compared to spiral imaging (P < 0.05). This finding was also reflected in a better vessel wall definition using radial data acquisition (P < 0.05). SNR and CNR were found to be higher when spiral k-space sampling was used (n.s.). CONCLUSION: Radial k-space sampling in concert with free-breathing navigator-gated cardiac-triggered MRI of the coronary vessel wall resulted in fewer motion artifacts and improved vessel wall definition compared to spiral k-space sampling. The proposed approach therefore appears to be preferable.  相似文献   

6.
PURPOSE: To evaluate the feasibility of three-dimensional (3D) steady state free precession (SSFP) magnetic resonance angiography (MRA) using nonselective radiofrequency excitation for the assessment of thoracic central veins. MATERIALS AND METHODS: Thirty consecutive patients (17 males, 13 females, age range 22-76) with various cardiac and thoracic vascular diseases underwent free-breathing electrocardiogram-gated noncontrast SSFP MRA and conventional high-resolution 3D contrast-enhanced (CE) MRA of the thorax at 1.5 T. Two readers evaluated both datasets for findings: venous visibility and sharpness (from 0, not visualized to 3, excellent definition); artifacts; signal-to-noise ratio (SNR); and contrast-to-noise ratio (CNR) in 8 venous segments including superior vena cava (SVC), supra-diaphragmatic inferior vena cava, bilateral brachiocephalic, proximal subclavian, and lower internal jugular veins. Statistical analysis was performed using Wilcoxon test for overall image quality and vessel visibility, t test for SNR and CNR analysis, and kappa coefficient for inter-observer variability. RESULTS: 3D SSFP and CE-MRA were successfully performed in all patients. Scan time for SSFP MRA ranged from 5 to 10 minutes (mean +/- standard deviation, 7 +/- 2 minutes). Reader 1 (2) graded the overall image quality as excellent and good on SSFP MRA in 23 (25) and 7 (5) patients, and on CE-MRA in 22 (23) and 8 (9) patients, respectively. On SSFP MRA, readers 1 and 2 graded 234 (97.5%) and 233 (97.1%) venous segments with diagnostic definition (grades 2 and 3) (kappa = 0.69), respectively. On conventional CE-MRA, readers 1 and 2 graded 231 (96.3%) and 232 (96.7%) venous segments with diagnostic definition (grades 2 and 3) (kappa = 0.68), respectively. Segmental visibility and sharpness were higher for lower internal jugular veins on CE-MRA for each reader (P < 0.001). No significant difference existed for venous visibility and sharpness scores for other venous segments between the 2 techniques for both readers (P > 0.05). SNR and CNR values were lower for internal jugular veins on SSFP MRA (P < 0.001). No significant difference existed between SNR and CNR values for the other venous segments on SSFP and CE-MRA (P > 0.05 for all). The 2 readers demonstrated patent SVC Glenn shunt to main pulmonary artery (n = 3), patent extra cardiac Fontan shunt from inferior vena cava to pulmonary artery confluence (n = 2), and dilatation and thrombosis of SVC (n = 1) and right brachiocephalic vein (n = 1) on both datasets. CONCLUSION: Free breathing navigator-gated noncontrast 3D SSFP MRA with nonselective radiofrequency excitation provides high image quality and sufficient SNR and CNR for confident evaluation of thoracic central veins.  相似文献   

7.
PURPOSE: To directly compare the three main myocardial perfusion cardiovascular magnetic resonance (CMR) sequences incorporating parallel acquisition methods. MATERIALS AND METHODS: In 15 subjects (12 men, 57 +/- 15.7 years) referred for diagnostic coronary angiography, we acquired first-pass perfusion images (0.1 mmol/kg gadolinium-DTPA) at rest and during adenosine (140 microg/kg/min) on three separate occasions using three sequences incorporating parallel acquisition methods and approximately equivalent spatiotemporal resolution: hybrid echo planar imaging (hEPI), steady-state free precession (SSFP), and gradient echo imaging (GRE). We calculated the contrast-to-noise ratio (CNR) of each scan and blinded observers scored the presence and severity of artifacts (1, worst to 4, best), diagnostic confidence (0, low to 2, high), transmurality, area, and epicardial vessel territory of perfusion defects. RESULTS: CNR was greatest with SSFP and least with hEPI (13.15 vs 7.85 P < 0.001). The most artifacts were recorded with SSFP and least with hEPI (2.00 vs 3.03 P < 0.001). Observers were significantly more confident in reporting hEPI images (1.6 hEPI vs 0.9 SSFP, P < 0.001). Results for GRE were intermediate for all assessments. CONCLUSION: The hEPI sequence scored best for diagnostic performance despite the SSFP sequence having greater CNR. This trial favors hEPI for clinical myocardial perfusion CMR and suggests CNR should not be the sole criterion used to gauge the best candidate sequence.  相似文献   

8.
PURPOSE: To compare the performance of the conventional diaphragm navigator (DNAV) and the recently developed cardiac fat navigator (FatNAV) in suppressing respiration-induced cardiac motion in free-breathing 3D balanced steady-state free precession coronary MRA (SSFP CMRA). MATERIALS AND METHODS: In 16 healthy volunteers the right coronary artery (RCA) was imaged at 1.5T using a navigator-gated 3D SSFP CMRA sequence. DNAV and FatNAV gating were performed in random order. Image quality difference was scored by three experienced readers blinded to the gating technique. Blood signal-to-noise ratio (SNR), blood-to-myocardium contrast-to-noise ratio (CNR), and navigator efficiency were calculated. RESULTS: Diagnostically interpretable CMRA was obtained successfully in all 16 subjects with FatNAV gating (0% failure rate) and only 14 subjects with DNAV gating (12% failure rate). Compared to DNAV gating, FatNAV gating provided similar SNR and CNR, better image quality (P < 0.01), and 28% improvement in navigator efficiency (P = 0.002). CONCLUSION: FatNAV gating provides more effective motion suppression and better image quality than DNAV gating for free-breathing 3D SSFP CMRA of the RCA in healthy subjects.  相似文献   

9.
OBJECTIVES: To evaluate the feasibility of three-dimensional (3D) steady-state free-precession (SSFP) magnetic resonance angiography (MRA) using nonselective radiofrequency excitation in the assessment of cardiac morphology, thoracic aorta, main pulmonary, and proximal coronary arteries. MATERIAL AND METHODS: Thirty consecutive patients (19 males; 11 females; age range, 20-74) with various cardiac and thoracic vascular diseases underwent free-breathing respiratory navigator-gated electrocardiogram-triggered noncontrast SSFP MRA and conventional high-resolution 3D contrast-enhanced MRA (CE-MRA) of the thorax at 1.5 T. Two readers evaluated both datasets for findings, vascular delineation and sharpness (from 0, not visualized to 3, excellent definition), artifacts, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) in 14 vascular segments including aorta, supra-aortic, pulmonary, and coronary arteries, and in cardiac chambers. Statistical analysis was performed using Wilcoxon test for vessel delineation, and [kappa] coefficient for interobserver variability. RESULTS: 3D SSFP and CE-MRA were successfully performed in all patients. Scan time for SSFP MRA ranged from 5 to 10 minutes (mean +/- standard deviation, 7 +/- 2 minutes). On SSFP MRA, readers 1 and 2 graded 233 (97.1%) and 234 (97.5%) coronary arterial segments and cardiac chambers, and 275 (91.7%) and 278 (92.7%) noncoronary arterial segments with diagnostic definition (grades 2 and 3) (k = 0.86). On conventional CE-MRA, readers 1 and 2 graded 10 (4.2%) and 12 (5%) coronary arterial segments and cardiac chambers, and 272 (90.7%) and 270 (90%) noncoronary arterial segments with diagnostic definition (grades 2 and 3) (k = 0.89). Segmental visibility was higher for aortic root, pulmonary trunk, proximal coronary arteries, and heart chambers (P < 0.001), and lower for supra-aortic arteries (P < 0.001) on SSFP MRA for each reader. SNR and CNR values were higher for aortic root and aorta on SSFP MRA (P < 0.001 for both). No significant difference existed between SNR and CNR values for the other vascular segments and cardiac chambers on SSFP and CE-MRA (P > 0.05 for all). The 2 readers demonstrated vascular stenosis and dilatation/aneurysm in 7 and 35 segments on both datasets, respectively. CONCLUSION: Noncontrast 3D SSFP MRA with nonselective radiofrequency excitation provides high image quality and sufficient SNR and CNR for confident assessment of cardiac and thoracic vascular diseases including congenital heart diseases. Our results suggest that noncontrast SSFP MRA outperforms CE-MRA in visualization of cardiac chambers, proximal coronary arteries, pulmonary trunk, and aortic root.  相似文献   

10.
Coronary artery imaging using contrast-enhanced 3D segmented EPI   总被引:2,自引:0,他引:2  
The purpose of the work was to evaluate the effectiveness of extracellular contrast media in improving MR coronary angiography using breath-hold segmented echo-planar imaging (SEPI). Two protocols were designed to optimize the inversion recovery-prepared contrast-enhanced SEPI method. In 15 healthy volunteers, significant improvements in signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), vessel sharpness, and length of visualization were observed post-contrast. The method with two targeted scans to cover the left and right arteries, respectively, following separate 20-mL contrast injections, was found to yield thinner slices and longer right coronary artery (RCA) visualization than a single scan following a 40-mL contrast injection without compromising SNR and CNR. In conclusion, extracellular contrast media substantially improves the delineation of coronary arteries with SEPI. J. Magn. Reson. Imaging 2001;13:676-681.  相似文献   

11.
PURPOSE: We sought to assess the feasibility of magnetic resonance imaging to evaluate cardiac function at 3.0 T compared with 1.5 T. MATERIAL AND METHODS: In a prospective intraindividual comparative study, 12 volunteers (range, 18-54 years), and 2 patients (range, 43-53 years) underwent cardiac cine magnetic resonance at both 3.0 T and 1.5 T. Data were acquired both with a steady-state free precession sequence (SSFP) and a spoiled gradient echo (SGE) sequence. If necessary, a frequency scout was used to correct for off-resonance artifacts. For both SSFP and SGE imaging, 6-mm thick retrospectively EKG-gated short axis views were acquired with equal matrix size (192 x 163) and comparable repetition time (TR). Cardiac function parameters were determined manually by a single investigator. Cardiac function parameters, signal to noise ratio (SNR), contrast to noise ratio (CNR), and the presence of artifacts were compared between the 2 magnetic field strengths. For statistical analysis, a Pearson's correlation coefficient was calculated, and a paired Student t test was used to test statistical significance. RESULTS: Very good correlations between cardiac function parameters at 1.5 T and 3.0 T (r > 0.84, P < 0.0011) were obtained. Compared with SGE, SSFP more frequently was prone to artifacts. With SSFP/SGE at 3.0 T, a SNR gain of 9.4/16% was achieved compared with 1.5 T. CONCLUSION: Functional cardiac cine magnetic resonance imaging can be regarded as equally accurate at 3.0 T compared with 1.5 T. Compared with SSFP imaging, the SGE sequence benefits more from higher field strengths and is less affected by artifacts.  相似文献   

12.
This study investigates the feasibility of imaging the coronary lumen and vessel-wall, using MRI with a radial k-space trajectory at 3 T. Such radial trajectories offer the advantage of greater vessel sharpness than traditional Cartesian trajectories. This field strength offers an increased signal-to-noise ratio (SNR) compared with 1.5 T, which compensates for the slight SNR reduction due to the radial sequence. Images of the coronary lumen were acquired for seven healthy volunteers. In ten volunteers the vessel wall was scanned, with blood suppression using oblique-slab adiabatic re-inversion. Scans were performed during free breathing, using prospective respiratory navigator-gating. Coronary lumen scans had SNR of 16.0±1.9 and contrast-to-noise ratio (CNR) of 10.3±2.1, showing acceptable image quality. Vessel wall images showed good image quality, with mean SNR of 16.6±2.0/5.8±2.8/10.1±2.2 for vessel wall/lumen/epicardial fat. The wall-blood CNR was 10.7±2.7, and wall-fat CNR was 6.5±2.5. It is concluded that radial gradient-echo imaging at 3 T is a promising method for coronary vessel-wall imaging, and is also feasible for imaging the coronary lumen.  相似文献   

13.
PURPOSE: To address degradation of coronary MR angiography (MRA) image quality due to heart rate variability (HRV)-associated variations in coronary artery position and motion. MATERIALS AND METHODS: Free-breathing navigator-gated and -corrected coronary MRA using subject-specific trigger delays and acquisition windows was combined with a real-time HRV correction algorithm, such as commonly used in left ventricular wall motion studies. Ten healthy adults underwent free-breathing navigator-gated and -corrected coronary MRA with and without HRV correction. Signal-to-noise (SNR), contrast-to-noise (CNR), vessel length, diameter, sharpness, and subjective image quality (on a five-point scale) were compared in a blinded fashion. RESULTS: Vessel sharpness improved significantly for both the left (LCA) and right (RCA) coronary artery systems (P = 0.016 and P = 0.015, respectively) with the use of HRV correction. Subjective image quality also improved significantly when HRV correction was used (P = 0.003). There were no significant differences with regard to SNR and CNR (P > 0.1). CONCLUSIONS: Preliminary results suggest that HRV correction improves objective and subjective image quality in coronary MRA. Continued studies in patients with known or suspected coronary artery disease are warranted to investigate the clinical impact of this technique.  相似文献   

14.
PURPOSE: To demonstrate the feasibility of three-dimensional thick-partition, contrast-enhanced, catheter-directed coronary artery magnetic resonance angiography (MRA) and test the hypothesis that three-dimensional imaging improves coronary artery background contrast-to-noise ratio (CNR) compared to two-dimensional imaging. MATERIALS AND METHODS: Catheters were advanced into the coronary arteries of swine (N = 6) under MR guidance. Three-dimensional coronary MRA was performed after intracoronary injection of a small dose of contrast media using magnetization-prepared steady-state free precession (SSFP) with two thick partitions. For comparison, two magnetization-prepared two-dimensional SSFP scans were also performed, one with no signal averaging and one with two signal averages. All sequences had the same coverage and in-plane spatial resolution. RESULTS: The coronary artery was successfully catheterized in all (6/6) animals. CNR for three-dimensional imaging was 11.1 +/- 1.2 for proximal arterial segments and 4.3 +/- 0.4 for distal segments. Without averaging, two-dimensional imaging CNRs for proximal and distal segments were 5.0 +/- 0.7 and 1.2 +/- 0.2, respectively. With averaging, two-dimensional imaging CNRs for proximal and distal segments were 9.4 +/- 1.5 and 2.9 +/- 0.4, respectively. Three-dimensional imaging showed a statistically significant increase in CNR over all two-dimensional imaging for both proximal and distal segments (P < 0.05). CONCLUSION: Three-dimensional thick-partition, contrast-enhanced, catheter-directed coronary MRA is feasible and improves CNR over two-dimensional projection imaging.  相似文献   

15.

Purpose:

To assess the hypothesis that steady‐state free procession (SSFP) allows for imaging of the coronary wall under the conditions of fast heart rate in heart transplantation (HTx) patients.

Materials and Methods:

With the approval of our Institutional Review Board, 28 HTx patients were scanned with a 1.5T scanner. Cross‐sectional black‐blood images of the proximal portions of the left main artery, left anterior descending artery, and right coronary artery were acquired with both a 2D, double inversion recovery (DIR) prepared turbo (fast) spin echo (TSE) sequence and a 2D DIR SSFP sequence. Image quality (scored 0–3), vessel wall area, thickness, signal‐to‐noise ratio (SNR, vessel wall), and contrast‐to‐noise ratio (CNR, wall‐lumen) were compared between TSE and SSFP.

Results:

The overall image quality of SSFP was higher than TSE (1.23 ± 0.95 vs. 0.88 ± 0.69, P < 0.001). SSFP had a higher coronary wall SNR (20.1 ± 8.5 vs. 14.9 ± 4.8, P < 0.001) and wall‐lumen CNR (8.2 ± 4.6 vs. 6.8 ± 3.7, P = 0.005) than TSE.

Conclusion:

Black‐blood SSFP coronary wall MRI provides higher image quality, SNR, and CNR than traditional TSE does in HTx recipients. It has the potential to become an alternative means to noninvasive imaging of cardiac allografts. J. Magn. Reson. Imaging 2012;35:1210‐1215. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
PURPOSE: To evaluate the efficacy of contrast-enhanced coronary magnetic resonance angiography (MRA) at 3.0 T. MATERIALS AND METHODS: Nine healthy human volunteers were studied on a 3.0-T whole-body MR system. A three-dimensional, breathhold, magnetization-prepared, segmented, gradient-echo sequence was used, with injection of 20 mL gadopentetate dimeglumine for each three-dimensional slab. Imaging parameters were optimized based on computer simulations. Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), depicted coronary artery length, lumen diameter, and imaging sharpness with contrast agent were evaluated. SNR and CNR were compared to the results from a previous 1.5-T study. RESULTS: A 53% increment in SNR and a 305% enhancement in CNR were measured with contrast. Vessel length and sharpness depicted were higher and the lumen diameter was lower (all P values < 0.05) in postcontrast images. Compared to previous results from 1.5-T, the SNR, CNR, and vessel sharpness were enhanced at 3.0 T with higher spatial resolution. CONCLUSION: Contrast-enhanced, three-dimensional, coronary MRA at 3.0 T is a promising technique for diagnosing coronary artery diseases. Patient studies are necessary to evaluate its clinical utility.  相似文献   

17.

Purpose:

To develop a 3D flow‐independent peripheral vessel wall imaging method using T2‐prepared phase‐sensitive inversion‐recovery (T2PSIR) steady‐state free precession (SSFP).

Materials and Methods:

A 3D T2‐prepared and nonselective inversion‐recovery SSFP sequence was designed to achieve flow‐independent blood suppression for vessel wall imaging based on T1 and T2 properties of the vessel wall and blood. To maximize image contrast and reduce its dependence on the inversion time (TI), phase‐sensitive reconstruction was used to restore the true signal difference between vessel wall and blood. The feasibility of this technique for peripheral artery wall imaging was tested in 13 healthy subjects. Image signal‐to‐noise ratio (SNR), wall/lumen contrast‐to‐noise ratio (CNR), and scan efficiency were compared between this technique and conventional 2D double inversion recovery – turbo spin echo (DIR‐TSE) in eight subjects.

Results:

3D T2PSIR SSFP provided more efficient data acquisition (32 slices and 64 mm in 4 minutes, 7.5 seconds per slice) than 2D DIR‐TSE (2–3 minutes per slice). SNR of the vessel wall and CNR between vessel wall and lumen were significantly increased as compared to those of DIR‐TSE (P < 0.001). Vessel wall and lumen areas of the two techniques are strongly correlated (intraclass correlation coefficients: 0.975 and 0.937, respectively; P < 0.001 for both). The lumen area of T2PSIR SSFP is slightly larger than that of DIR‐TSE (P = 0.008). The difference in vessel wall area between the two techniques is not statistically significant.

Conclusion:

T2PSIR SSFP is a promising technique for peripheral vessel wall imaging. It provides excellent blood signal suppression and vessel wall/lumen contrast. It can cover a 3D volume efficiently and is flow‐ and TI‐independent. J. Magn. Reson. Imaging 2010;32:399–408. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
The purposes of our study were to investigate the benefits of using a single dose of an extracellular contrast agent for coronary magnetic resonance angiography (CMRA) and to determine the relative benefits of arterial-phase vs. delayed-phase image acquisition. The right coronary artery was imaged in 10 healthy adults using a breath-hold, two-dimensional fast gradient echo pulse sequence designed for vessel tracking (multiphase, multislice image acquisition). Pre- and postcontrast CMRA was performed. Postcontrast imaging consisted of arterial- and delayed-phase CMRA following a 15 mL bolus (single dose) of contrast media and of delayed-phase imaging following a cumulative 45 mL contrast dose (triple dose). Contrast-enhanced CMRA provided a significantly higher (P < 0.001) signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) than noncontrast CMRA. CNR was highest for single-dose arterial-phase CMRA (13.1 +/- 4.5) and triple-dose delayed-phase CMRA (13.0 +/- 4.8), followed by single-dose delayed-phase CMRA (8.4 +/- 3.5) and noncontrast CMRA (4.2 +/- 1.8). Single-dose arterial-phase CMRA provided the best visualization of the distal right coronary artery and was preferred for blinded physician assessments. We concluded that utilization of a single dose of extracellular contrast media improves CMRA, especially if timed for arterial-phase imaging. J. Magn. Reson. Imaging 2001;13:682-689.  相似文献   

19.
The purpose of this study was to evaluate a free‐breathing three‐dimensional (3D) dual inversion‐recovery (DIR) segmented k‐space gradient‐echo (turbo field echo [TFE]) imaging sequence at 3T for the quantification of aortic vessel wall dimensions. The effect of respiratory motion suppression on image quality was tested. Furthermore, the reproducibility of the aortic vessel wall measurements was investigated. Seven healthy subjects underwent 3D DIR TFE imaging of the aortic vessel wall with and without respiratory navigator. Subsequently, this sequence with respiratory navigator was performed twice in 10 healthy subjects to test its reproducibility. The signal‐to‐noise (SNR), contrast‐to‐noise ratio (CNR), vessel wall sharpness, and vessel wall volume (VWV) were assessed. Data were compared using the paired t‐test, and the reproducibility of VWV measurements was evaluated using intraclass correlation coefficients (ICCs). SNR, CNR, and vessel wall sharpness were superior in scans performed with respiratory navigator compared to scans performed without. The ICCs concerning intraobserver, interobserver, and interscan reproducibility were excellent (0.99, 0.94, and 0.95, respectively). In conclusion, respiratory motion suppression substantially improves image quality of 3D DIR TFE imaging of the aortic vessel wall at 3T. Furthermore, this optimized technique with respiratory motion suppression enables assessment of aortic vessel wall dimensions with high reproducibility. Magn Reson Med 61:35–44, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

20.

Purpose:

To examine the feasibility of flow‐independent T2‐prepared inversion recovery (T2IR) black‐blood (BB) magnetization preparation for three‐dimensional (3D) balanced steady‐state free precession (SSFP) vessel wall MRI of the popliteal artery, and to evaluate its performance relative to flow‐dependent double inversion recovery (DIR), spatial presaturation (SPSAT), and motion‐sensitizing magnetization preparation (MSPREP) BB techniques in healthy volunteers.

Materials and Methods:

Eleven subjects underwent 3D MRI at 1.5 Tesla with four techniques performed in a randomized order. Wall and lumen signal‐to‐noise ratio (SNR), wall‐to‐lumen contrast‐to‐noise ratio (CNR), vessel wall area, and lumen area were measured at proximal, middle, and distal locations of the imaged popliteal artery. Image quality scores based on wall visualization and degree of intraluminal artifacts were also obtained.

Results:

In the proximal region, DIR and SPSAT had higher wall SNR and wall‐to‐lumen CNR than both MSPREP and T2IR. In the middle and distal regions, DIR and SPSAT failed to provide effective blood suppression, whereas MSPREP and T2IR provided adequate black blood contrast with comparable wall‐to‐lumen CNR and image quality.

Conclusion:

The feasibility of 3D SSFP imaging of the popliteal vessel wall using flow‐independent T2IR was demonstrated with effective blood suppression and good vessel wall visualization. Although DIR and SPSAT are effective for thin slab imaging, MSPREP and T2IR are better suited for 3D thick slab imaging. J. Magn. Reson. Imaging 2011;. © 2011 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号