首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2342篇
  免费   103篇
  国内免费   21篇
医药卫生   2466篇
  2019年   22篇
  2018年   22篇
  2017年   13篇
  2016年   30篇
  2015年   35篇
  2014年   52篇
  2013年   97篇
  2012年   105篇
  2011年   104篇
  2010年   107篇
  2009年   84篇
  2008年   110篇
  2007年   163篇
  2006年   123篇
  2005年   101篇
  2004年   106篇
  2003年   67篇
  2002年   104篇
  2001年   80篇
  2000年   93篇
  1999年   102篇
  1998年   70篇
  1997年   57篇
  1996年   54篇
  1995年   36篇
  1994年   41篇
  1993年   26篇
  1992年   21篇
  1991年   17篇
  1990年   23篇
  1989年   42篇
  1988年   44篇
  1987年   36篇
  1986年   50篇
  1985年   35篇
  1984年   26篇
  1983年   21篇
  1982年   24篇
  1981年   12篇
  1980年   8篇
  1979年   11篇
  1978年   9篇
  1977年   6篇
  1976年   5篇
  1975年   8篇
  1973年   6篇
  1972年   5篇
  1969年   4篇
  1968年   6篇
  1966年   5篇
排序方式: 共有2466条查询结果,搜索用时 31 毫秒
1.
The role of dynamin in regulation of kidney filtration barrier is well documented. Dynamin binds to and produces filamentous actin, which is a key component of healthy podocyte foot processes (FPs). Destruction of dynamin, for example by cathepsin L, leads to loss of a functional actin network and uncoordinated membrane signaling, a situation that allows for effacement of FPs and proteinuria. Now, Khalil et al have examined the dynamin expression in kidneys of proteinuric animal models as well as in kidney patients and produced data that further clarifies the role of dynamin in glomerular and tubular proteinuria and may aid in pinpointing patients who are affected by loss of dynamin function and may benefit from appropriate therapeutic approaches. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   
2.
Technological innovations have initiated a fundamental change in invasive therapeutic approaches which has led to a welcome reduction of surgical trauma but was also associated with a declining role of conventional surgery. Active utilization of future technological developments is decisive to promote new therapeutic strategies and to avoid a further loss of importance of surgery. This includes individualized preoperative therapy planning as well as intraoperative diagnostic work-up and navigation and the use of new functional intelligent implants. The working environment “surgical operating room” has to be refurbished into an integrated cooperating functional system. The impact of new technological developments is particularly obvious in minimally invasive surgery. There is a clear tendency towards further reduction in trauma in the surgical access. The incision will become smaller and the number of ports will be further reduced, with the aim of ultimately having just one port (monoport surgery) or even via natural access routes (scarless surgery). Among others, improved visualization including, e.g. autostereoscopy, digital image processing and intelligent support systems, which are able to assist in a cooperative way, will enable these goals to be achieved.  相似文献   
3.
4.
In this study, a functional magnetic resonance imaging paradigm originally employed by Takahashi et al. was adapted to look for emotion-specific differences in functional brain activity within a healthy German sample (N = 14), using shame- and guilt-related stimuli and neutral stimuli. Activations were found for both of these emotions in the temporal lobe (shame condition: anterior cingulate cortex, parahippocampal gyrus; guilt condition: fusiform gyrus, middle temporal gyrus). Specific activations were found for shame in the frontal lobe (medial and inferior frontal gyrus), and for guilt in the amygdala and insula. This is consistent with Takahashi et al.’s results obtained for a Japanese sample (using Japanese stimuli), which showed activations in the fusiform gyrus, hippocampus, middle occipital gyrus and parahippocampal gyrus. During the imagination of shame, frontal and temporal areas (e.g. middle frontal gyrus and parahippocampal gyrus) were responsive regardless of gender. In the guilt condition, women only activate temporal regions, whereas men showed additional frontal and occipital activation as well as a responsive amygdala. The results suggest that shame and guilt share some neural networks, as well as having individual areas of activation. It can be concluded that frontal, temporal and limbic areas play a prominent role in the generation of moral feelings.  相似文献   
5.
Being reminded of the inherently finite nature of human existence has been demonstrated to elicit strivings for sexual reproduction and the formation and maintenance of intimate relationships. Recently, it has been proposed that the perception of potential mating partners is influenced by mortality salience. Using functional magnetic resonance imaging, we investigated the neurocognitive processing of attractive opposite-sex faces after priming with death-related words for heterosexual men and women. Significant modulations of behavioral and neural responses were found when participants were requested to decide whether they would like to meet the presented person. Men were more in favor of meeting attractive women after being primed with death-related words compared to a no-prime condition. Increased neural activation could be found under mortality salience in the left anterior insula and the adjacent lateral prefrontal cortex (lPFC) for both men and women. As previously suggested, we believe that the lPFC activation reflects an approach-motivated defense mechanism to overcome concerns that are induced by being reminded of death and dying. Our results provide insight on a neurocognitive level that approach motivation in general, and mating motivation in particular is modulated by mortality salience.  相似文献   
6.
Trauma und Berufskrankheit - Ziel der Konsensuskonferenz war es, den aktuellen Wissensstand zur Indikationsstellung Bild gebender Verfahren in der Unfallchirurgie für die Regionen Hand, Knie...  相似文献   
7.
Renal artery stenosis (RAS) is the leading cause of secondary hypertension. Magnetic resonance (MR) imaging and in particular MR angiography have evolved into important diagnostic tools for the detection and grading of RAS due to the lack of ionizing radiation and nephrotoxic contrast agent. This review describes state-of-the-art MR angiographic techniques and introduces the reader to current concepts of RAS grading with MR angiography. We compare MR angiography with conventional angiography and intravascular ultrasound as a standard of reference. The technical basis of functional imaging techniques such as arterial spin labeling perfusion measurements, contrast-enhanced perfusion measurements, and MR flow measurements are explained. Their value for the grading and detection of RAS and for the differentiation of renovascular from renal parenchymal disease is discussed. An overview about imaging during and after interventional therapy of RAS and an introduction to the current understanding of prediction of successful interventional therapy finishes this review.  相似文献   
8.
Diabetic kidney disease (DKD) is the most common cause of ESRD in the United States. Podocyte injury is an important feature of DKD that is likely to be caused by circulating factors other than glucose. Soluble urokinase plasminogen activator receptor (suPAR) is a circulating factor found to be elevated in the serum of patients with FSGS and causes podocyte αVβ3 integrin-dependent migration in vitro. Furthermore, αVβ3 integrin activation occurs in association with decreased podocyte-specific expression of acid sphingomyelinase-like phosphodiesterase 3b (SMPDL3b) in kidney biopsy specimens from patients with FSGS. However, whether suPAR-dependent αVβ3 integrin activation occurs in diseases other than FSGS and whether there is a direct link between circulating suPAR levels and SMPDL3b expression in podocytes remain to be established. Our data indicate that serum suPAR levels are also elevated in patients with DKD. However, unlike in FSGS, SMPDL3b expression was increased in glomeruli from patients with DKD and DKD sera-treated human podocytes, where it prevented αVβ3 integrin activation by its interaction with suPAR and led to increased RhoA activity, rendering podocytes more susceptible to apoptosis. In vivo, inhibition of acid sphingomyelinase reduced proteinuria in experimental DKD but not FSGS, indicating that SMPDL3b expression levels determined the podocyte injury phenotype. These observations suggest that SMPDL3b may be an important modulator of podocyte function by shifting suPAR-mediated podocyte injury from a migratory phenotype to an apoptotic phenotype and that it represents a novel therapeutic glomerular disease target.  相似文献   
9.
Fibroblast growth factor (FGF) signaling has been implicated in the pathogenesis of pulmonary fibrosis. Mice lacking FGF2 have increased mortality and impaired epithelial recovery after bleomycin exposure, supporting a protective or reparative function following lung injury. To determine whether FGF2 overexpression reduces bleomycin‐induced injury, we developed an inducible genetic system to express FGF2 in type II pneumocytes. Double‐transgenic (DTG) mice with doxycycline‐inducible overexpression of human FGF2 (SPC‐rtTA;TRE‐hFGF2) or single‐transgenic controls were administered intratracheal bleomycin and fed doxycycline chow, starting at either day 0 or day 7. In addition, wild‐type mice received intratracheal or intravenous recombinant FGF2, starting at the time of bleomycin treatment. Compared to controls, doxycycline‐induced DTG mice had decreased pulmonary fibrosis 21 days after bleomycin, as assessed by gene expression and histology. This beneficial effect was seen when FGF2 overexpression was induced at day 0 or day 7 after bleomycin. FGF2 overexpression did not alter epithelial gene expression, bronchoalveolar lavage cellularity or total protein. In vitro studies using primary mouse and human lung fibroblasts showed that FGF2 strongly inhibited baseline and TGFβ1‐induced expression of alpha smooth muscle actin (αSMA), collagen, and connective tissue growth factor. While FGF2 did not suppress phosphorylation of Smad2 or Smad‐dependent gene expression, FGF2 inhibited TGFβ1‐induced stress fiber formation and serum response factor‐dependent gene expression. FGF2 inhibition of stress fiber formation and αSMA requires FGF receptor 1 (FGFR1) and downstream MEK/ERK, but not AKT signaling. In summary, overexpression of FGF2 protects against bleomycin‐induced pulmonary fibrosis in vivo and reverses TGFβ1‐induced collagen and αSMA expression and stress fiber formation in lung fibroblasts in vitro, without affecting either inflammation or epithelial gene expression. Our results suggest that in the lung, FGF2 is antifibrotic in part through decreased collagen expression and fibroblast to myofibroblast differentiation. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号