首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To improve the interfacial adhesion between carbon fiber (CF) and poly(acrylonitrile‐butadiene‐styrene) (ABS) thermoplastic, an emulsion sizing whose film former was a terpolymer N‐phenylmaleimide‐styrene‐maleic anhydride (NSM)/ABS mixture was prepared. NSM, an efficient heat‐resistant modifier for ABS, could make the film former possess a superior heat resistance, which helped the sizing layer maintain integrity during the preparation of CF/ABS composite. Moreover, differential scanning calorimetry (DSC) results demonstrated that the glass transition temperature (Tg) of the NSM modified ABS achieved an improvement of 25.3°C. Particle size and distribution of the sizing agent were investigated to evaluate its stability. The FTIR spectrum obtained demonstrated that the chemical compositions of the sized CF got greatly changed and numerous functional groups appeared on sized CF. Abrasion resistance and fluffs of CF were tested and the results indicated that the sized CF obtained an appreciable enhancement in handleability. Interlaminar shear strength (ILSS) results revealed, after sizing, that the ILSS enhanced by 26.6%, due to the inserted sizing layer between CF and ABS matrix. POLYM. COMPOS., 37:2940–2949, 2016. © 2015 Society of Plastics Engineers  相似文献   

2.
A water‐soluble epoxy resin was synthesized by the reaction between novolac epoxy resin (F‐51) and diethanolamine. Then, the modified F‐51 was mixed with poly(alkylene glycol allyl glycidyl ether) as a film former of a sizing agent. A series of water‐soluble sizing agents for carbon fiber (CF) were prepared. The modified F‐51 was analyzed by Fourier Transform infrared spectroscopy. The surface morphology of the CF was characterized by scanning electron microscopy. The effects of the sizing agent on the handling characteristics were investigated by abrasion resistance, fluffs, and breakage and stiffness tests. The results show that the abrasion resistance of the sized CF increased by 114.5% and reached 2344 times and the mass of fabric hairiness decreased to 3.2 mg. The interlaminar shear strength (ILSS) test indicated that the interfacial adhesion of the composite could be greatly improved. The ILSS of the sized CF composite could reach a maximum value of 42.40 MPa. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39843.  相似文献   

3.
The Graphene oxide (GO) sheets were used for preparing the epoxy resin Pickering emulsion. The particle size and the zeta potential of the Pickering emulsion were measured to evaluate its stability. The stable emulsion could be served as the film former of sizing agent for carbon fiber (CF). The effect of the Pickering emulsion stabilized by GO sheets on the properties of CF and the interfacial adhesion property of CF reinforced composite were investigated. Scanning electron microscopy (SEM) images showed that there existed a layer of sizing agent film with GO sheets evenly on the CF surface. Abrasion resistance and stiffness values of CF were tested and the results indicated that the sized CF conformed to the requirement of CF handleability. The interlaminar shear strength (ILSS) test indicated that the interfacial adhesion of the composite could be greatly improved. The fracture surfaces of CF composites were examined by SEM after ILSS tests. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42285.  相似文献   

4.
The changes in interfacial fracture energy of three kinds of commercially sized carbon fiber (CF)/epoxy resin composites in the range from ambient temperature to 130°C were investigated using the single‐fiber fragmentation test to evaluate the heat resistance of the interphase. The effects of CF sizing on the interfacial bonding property were studied using desized CF/epoxy resin composites. Thermogravimetric analysis and differential scanning calorimetry of the combination of sizing and matrix were employed to investigate the role of sizing on the variations in the fiber/matrix interfacial property under elevated temperature. The interfacial fracture energy values of all the studied CF composites were found to decrease quickly during the initial stage of temperature rise and drop gradually at higher temperature. At elevated temperature, the desized CF composites had higher heat resistance than the corresponding sized fiber composites. The differences in the interfacial heat resistance among the three kinds of CF composites and the difference in the interfacial thermal stability between the sized and the desized fiber composites were related to different glass transition temperatures of the interphases. The interaction between sizing and the matrix and the chain motion of the crosslink structure of the interphase has been suggested to determine the interfacial heat resistance. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

5.
Vinyl ester resin emulsion type sizing agent (HMSA‐1) was synthesized by phase inversion emulsification method. Centrifugal sedimentation analysis, particle size analysis, Fourier transforms infrared spectroscopy (FTIR), and gel permeation chromatography were used to characterize HMSA‐1 and Japanese commercial sizing agents (JSA‐1 and JSA‐2). Meanwhile, abrasion resistance, fluffs and breakage, stiffness, scanning electron microscope (SEM) were used to analyze the workability in later process of carbon fiber and surface morphology. The results showed that HMSA‐1 could significantly improve handling characteristics of carbon fiber. SEM micrographs demonstrated that the sized carbon fiber had smooth surface. HMSA‐1 had better compatibility with vinyl ester resin. The interlaminar shear strength (ILSS) of HMSA‐1 sized carbon fiber/vinyl ester resin composite reached the maximum value of 45.96 MPa. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
A series of self‐emulsified waterborne epoxy resin (WEP) emulsions were used as surface sizing for carbon fibers (CFs) to improve the interfacial adhesion between the CF and epoxy matrix. In this work, the hydrogenated bisphenol‐A epoxy resin (HBPAE) was modified by polyethylene glycol (PEG) with molecular weights of 400, 800, 1000, 1500, 2000, 4000, and 6000 g/mol. The properties of the WEP emulsion were examined by Fourier transform infrared spectroscopy, dynamic light scattering, and transmission electron microscopy. The surface characteristics of sized CFs were evaluated using scanning electron microscopy, atomic force microscopy, and X‐ray photoelectron spectroscopy. Afterwards, CF/EP composites were prepared and their fracture surface and interlaminar shear strength (ILSS) were examined. The results indicated that PEG2000 modified HBPAE sizing had the optimum emulsion stability and film‐forming ability. Meanwhile, the results also demonstrated that a continuous and uniform sizing layer was formed on the surface of CFs and the surface sizing was excellent in improving the chemical activity of CFs. Compared with unsized CFs, the O1s/C1s composition ratio was observed to increase from 11.51% to 33.17% and the ILSS of CF/EP composites increased from 81.2 to 89.7 MPa, exhibiting better mechanical property than that of commercial Takemoto S64 sized CFs. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44757.  相似文献   

7.
Epoxy syntactic foams were prepared with diglycidyl ether of bisphenol‐A (DGEBA) epoxy resin, 2.4.6‐tri(dimethylaminomethyl)phenol (DMP‐30), coupling treated microsphere and short carbon fiber. The density of the foam was maintained between 0.56 and 0.91 g/cm3 for all compositions. Compressive, flexural, tensile and dynamic mechanical properties of the foams were investigated with respect to hollow glass microsphere (HGM) and carbon fiber (CF) content. A considerable improvement in the mechanical properties viz. compressive, flexural and tensile strengths was observed for the foams on incorporation of a small quantity of CF. The storage modulus were higher for the foam composites containing CF. The presence of HGM has significant influence on Tg of the syntactic foams, spherical filler diminished the Tg of the syntactic foams due to the plasticizing effect of the coupling treatment of HGM, that is helpful for enhancing damping properties of syntactic foams. POLYM. COMPOS., 37:1960–1970, 2016. © 2015 Society of Plastics Engineers  相似文献   

8.
《Polymer Composites》2017,38(9):2001-2008
Carbon nanotube (CNT)/carbon fiber (CF) hybrid fiber was fabricated by sizing unsized CF tow with a sizing agent containing CNT. The hybrid fiber was used to reinforce a thermoplastic polymer to prepare multiscale composite. The mechanical properties of the multiscale composite were characterized. Compared with the base composite (traditional commercial CF), the multiscale composite reinforced by the CNT/CF hybrid fiber shows increases in interlaminar shear strength (ILSS) and impact toughness. Laminate containing CNTs showed a 115.4% increase in ILSS and 27.0% increase in impact toughness. The reinforcing mechanism was also discussed by observing the impact fracture morphology. POLYM. COMPOS., 38:2001–2008, 2017. © 2015 Society of Plastics Engineers  相似文献   

9.
The nano‐SiO2 particles modified by silane coupling agent A‐1100 were used for preparing the vinyl ester resin (VE) Pickering emulsion. The stable emulsion could be served as the film former of sizing agent for glass fiber (GF). The influence of the wettability and the addition amount of nano‐SiO2 on the stability of film former emulsion was explored. The effect of nano‐SiO2 Pickering emulsion type sizing agent on the properties of GF was investigated. SEM images show that there existed a layer of sizing agent film with nano‐SiO2 particles evenly on the GF surface. The abrasion resistance of the sized GF reached 3,579 times and the stiffness was 69 mm. The strand integrity also performed well. The fracture strength of GF bundles treated by Pickering emulsion type sizing agent increased by 28.6% to 0.504 N/Tex compared with that of the unsized GF bundles. The interlaminar shear strength (ILSS) of GF/VE composites sized by self‐made sizing agent which contained nano‐SiO2 has improved, compared to the unsized GF reinforced VE composite. POLYM. COMPOS., 37:334–341, 2016. © 2014 Society of Plastics Engineers  相似文献   

10.
This work is aimed at investigating how molecule structure of polyurethanes (PUs) as sizing agents influence the interface properties of carbon fiber (CF) reinforced polycarbonate (PC) composites. Effects of four PUs as sizing agents for CF on the interlaminar shear strength (ILSS) of CF reinforced PC composites are investigated. It is found that the three PUs except PC–PU as sizing agents on oxidized CF (OCF) made the ILSS of their reinforced PC composites increase up to 62.9 MPa by more than 24.8%. The chemical interaction between PU sizing agents and CF are attributed to high reactivity of isocyanate, but carbonate groups on PC–PU may have a chain unzipping reaction due to active groups on the surface of OCF. The chemical interaction between PU sizing agents and PC are attributed to transesterification. As a result, PUs containing isocyanate or polyester groups are ideal sizing agents for CF reinforced PC composites. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47982.  相似文献   

11.
Introducing nanoparticles onto the surface of carbon fibers (CFs) is a useful method for enhancing the quality of fiber-matrix interface. In this work, a liquid sizing agent containing functionalized silica nanoparticles (SiO2) was well prepared to improve interfacial strength and mechanical properties of composites. In order to enhance the dispersion of SiO2 nanoparticles in sizing agent, SiO2 nanoparticles were chemically grafted with 3-aminopropyltriethoxysilane (APS), and then silanized silica (SiO2-APS) was introduced into the interphase by a conventional sizing process as well. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA) confirmed the successful preparation of SiO2-APS. Scanning electron microscopy (SEM) showed that a uniform distribution of SiO2-APS on the fiber surface and the increased surface roughness. The sized fibers (CF/SiO2-APS) exhibited a high surface free energy and good wettability based on a dynamic contact angle testing. Interfacial microstructure and mechanical properties of untreated and sized CFs composites were investigated. Simultaneous enhancements of interlaminar shear strength (ILSS) and impact toughness of CF/SiO2-APS composites were achieved, increasing 44.79% in ILSS and 31.53% in impact toughness compared to those of untreated composites. Moreover, flexural strength and modulus of composites increased by 32.22 and 50.0% according to flexural test. In addition, the hydrothermal aging resistance of CF/SiO2-APS composites has been improved significantly owing to the introduced Si-O-Si bonds at the interface.  相似文献   

12.
In this article, The CF surface was modified by the synergistic modification of electrochemical oxidation and sizing treatment. Firstly, the electrochemical oxidation was carried out using fatty alcohol polyoxyethylene ether phosphate (AEOPK) as the electrolyte. The content of active groups on the modified CF surface increased by 235%. However, the strength of CF monofilament decreased due to the etching. Then, the electrochemically oxidized CFs were sized with the phosphate modified epoxy resin (PAEK). The etched defects on CF surface caused by the electrochemical oxidation were repaired by sizing agent molecules according to the AFM results. Furthermore, the spreadability of PAEK emulsion on the CF surface, the content of CF surface groups and the interaction of CFRC were characterized by using the monofilament contact angle, XPS and Raman spectroscopy. The results suggested that the synergistic modification could improve the CF surface activity, facilitate the spreading of PAEK on the CF surface, and increase the interaction between the CFs and the resin matrix. There were 20.3 and 22.6% enhancement in the breaking strength and elongation of CF monofilament. In addition, the interlaminar shear strength (ILSS) of CFRC prepared with synergistically modified CFs was increased from 12.81 to 33.04 MPa. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48028.  相似文献   

13.
Composites based on carbon fiber (CF) and benzoxazine (BA‐a) modified with PMDA were investigated. The flammability of the carbon fiber composites was examined by limiting oxygen index (LOI) and UL‐94 vertical tests. The LOI values increased from 26.0 for the CF/poly(BA‐a) composite to 49.5 for the CF‐reinforced BA‐a/PMDA composites as thin as 1.0 mm and the CF‐reinforced BA‐a/PMDA composites were also achieved the maximum V‐0 fire resistant classification. Moreover, the incorporation of the PMDA into poly(BA‐a) matrix significantly enhanced the Tg and the storage modulus (E') values of the CF‐reinforced BA‐a/PMDA composites rather than those of the CF/poly(BA‐a). The Tg values and storage moduli of the obtained CF‐reinforced BA‐a/PMDA composites were found to have relatively high value up to 237°C and 46 GPa, respectively. The CF‐reinforced BA‐a/PMDA composites exhibited relatively high degradation temperature up to 498°C and substantial enhancement in char yield with a value of up to 82%, which are somewhat higher compared to those of the CF/poly(BA‐a) composite, i.e., 405°C and 75.7%, respectively. Therefore, due to the improvement in flame retardant, mechanical and thermal properties, the obtained CF‐reinforced BA‐a/PMDA composites exhibited high potential applications in advanced composite materials that required mechanical integrity and self‐extinguishing property. POLYM. COMPOS., 34:2067–2075, 2013. © 2013 Society of Plastics Engineers  相似文献   

14.
《Polymer Composites》2017,38(9):2035-2042
Epoxy resin was modified by adding a silane coupling agent/nano‐calcium carbonate master batch. Then, samples of binary carbon fiber/epoxy composites and ternary fiber/nano‐CaCO3/epoxy were prepared by hot press process. The interlaminar shear strength (ILSS) of the carbon fiber/epoxy composites was investigated and the results indicate that introduction of the treated nano‐CaCO3 enhances ILSS obviously. In particular, the addition of 4 wt% nano‐CaCO3 leads to 36.6% increase in the ILSS for the composite. The fracture surfaces of the carbon fiber/epoxy composites and the mechanical properties of epoxy resin cast are examined and both of them are employed to explain the change of ILSS. The results show that the change of ILSS is primarily due to an increase of the epoxy matrix strength and an increase of the fiber/epoxy interface. The bifurcation of propagating cracks, stress transfer, and cavitation are deduced for the reasons of strengthening and toughening effect of nano‐CaCO3 particles. POLYM. COMPOS., 38:2035–2042, 2017. © 2015 Society of Plastics Engineers  相似文献   

15.
The poor interlaminar properties restrict the application of carbon fiber reinforced polymer (CFRP) composites. In this work, a novel method for fabricating a graded interface structure is developed to improve the through-thickness thermal conductivity of CFRP composites. High-strength graphene nano-plates (GnP) and phenolic resin (PF) were selected to deposit on the surface of carbon fiber to design a novel CF/Epoxy laminates, where a simultaneous improvement of interlaminar shear strength (ILSS) and through-thickness thermal conductivity was observed. With addition of 1 wt % of GnP-PF in CF, 37.04% increase of the ILSS, and 16.67% enhancement of thermal conductivity compared to the original CFRP. The mechanism for improvement of both ILSS and thermal conductivity was studied by scanning electron microscopy and nano-indentation, where a better interface formed by GnP-PF has been clearly observed. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47061.  相似文献   

16.
In this article, we report on the preparation and characterization of novel poly(vinyl chloride) (PVC)–carbon fiber (CF) composites. We achieved the reinforcement of PVC matrices with different plasticizer contents using unidirectional continuous CFs by applying a warm press and a cylinder press for the preparation of the PVC–CF composites. We achieved considerable reinforcement of PVC even at a relatively low CF content; for example, the maximum stress (σmax) of the PVC–CF composite at a 3% CF content was found to be 1.5–2 times higher than that of the PVC matrix. There were great differences among the Young's modulus values of the pure PVC and PVC–CF composites matrices. The absolute Young's modulus values were in the range 1100–1300 MPa at a 3% CF content; these values were almost independent of the plasticizer content. In addition, we found a linear relationship between σmax and the CF content and also recognized a linear variation of the Young's modulus with the CF content. The adhesion of CF to the PVC matrix was strong in each case, as concluded from the strain–stress curves and the light microscopy and scanning electron microscopy investigations. The mechanical properties of the PVC–CF composites with randomly oriented short (10 mm) fibers were also investigated. At low deformations, the stiffness of the composites improved with increasing CF content. Dynamic mechanical analysis (DMA) was used to determine the glass‐transition temperature (Tg) of the PVC–CF composites. The high increase in the Young's modulus entailed only a mild Tg increase. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
The performance of carbon fibers-reinforced composites is dependent to a great extent on the properties of fiber–matrix interface. To improve the interfacial properties in carbon fibers/epoxy composites, nano-SiO2 particles were introduced to the surface of carbon fibers by sizing treatment. Atomic force microscope (AFM) results showed that nano-SiO2 particles had been introduced on the surface of carbon fibers and increase the surface roughness of carbon fibers. X-ray photoelectron spectroscopy (XPS) showed that nano-SiO2 particles increased the content of oxygen-containing groups on carbon fibers surface. Single fiber pull-out test (IFSS) and short-beam bending test (ILSS) results showed that the IFSS and ILSS of carbon fibers/epoxy composites could obtain 30.8 and 10.6% improvement compared with the composites without nano-SiO2, respectively, when the nano-SiO2 content was 1 wt % in sizing agents. Impact test of carbon fibers/epoxy composites treated by nano-SiO2 containing sizing showed higher absorption energy than that of carbon fibers/epoxy composites treated by sizing agent without nano-SiO2. Scanning electron microscopy (SEM) of impact fracture surface showed that the interfacial adhesion between fibers and matrix was improved after nano-SiO2-modified sizing treatment. Dynamic mechanical thermal analysis (DMTA) showed that the introduction of nano-SiO2 to carbon fibers surface effectively improved the storage modulus of carbon fibers/epoxy.  相似文献   

18.
用两种环氧树脂上浆剂对国产聚丙烯腈基碳纤维进行上浆,测试和比较了两种环氧树脂上浆剂对聚丙烯腈(PAN)基碳纤维耐磨性、与水接触角、表面能等性能以及拉伸强度、伸长率、层间剪切强度(ILSS)等力学性能的影响。上浆剂中主体成分环氧树脂相对分子质量不是影响碳纤维层间剪切强度的决定性因素。  相似文献   

19.
Interfacial properties were evaluated for carbon fiber (CF) with different thermosetting polymeric matrices in composites. CF tow was wet by phenolic or epoxies, and the interfacial adhesion evaluated by electrical resistance changes. The interfaces between two types of CF tows with phenolic resin and three types of epoxies were investigated. The change in electrical resistance was found to depend on the wettability of CF by the polymer resins, with the more obvious resistance changes being associated with better wettability. The electrical resistance changes were measured 20?min after the polymer resin was dropped on the CF tow. To confirm the relationship between changes in resistance and interfacial properties, both interfacial shear stress (IFSS) and interlaminar shear stress (ILSS) were also measured. The results of these mechanical measurements were generally consistent with the electrical resistance measurements in that the materials with high electrical resistance also exhibited high IFSS and ILSS.  相似文献   

20.
The emission of weak visible chemiluminescence (CL) during the cure of a tetraglycidyl 4,4′-diaminodiphenyl methane (TGDDM)-based epoxy resin, with three different concentrations of 4,4′-diaminodiphenylsulfone (DDS) has been studied at 135°C. Spectral analysis indicates that the CL originates from trace oxidation of the TGDDM resin and the emission intensity is sensitive to the viscosity changes during cure. From thermal analysis data, sharp discontinuities in CL intensity are shown to occur at the gel point. The temperature dependence of CL from a cured resin also shows a sharp discontinuity at Tg. These results indicate that CL provides a sensitive monitor of both the kinetics of gelation and the network formation in this epoxy resin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号