首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
张正 《电子器件》2021,44(1):39-45
对采用双回转结构交叉耦合差分有源电感(DGC-DAI)的可调谐、高品质因子Q和低噪声差分有源带通滤波器(THQLNA-BPF)进行了研究。输入级,采用差分共基-共射结构,以抑制噪声和获得高频特性;输出级,采用差分共集放大器,以获得高的驱动能力和高的隔离度;有源电感滤波网络,利用DAI电感值可宽范围调谐、高Q值和低的噪声,来分别实现BPF的中心频率的宽范围调节、高Q值和良好的噪声特性;进一步地,利用变容二极管网络改善BPF中心频率的可调性和提高Q值,利用有源可调负阻网络提高BPF的Q值和进行Q值独立调节。基于WIN 0.2μm GaAs HBT工艺,利用ADS对THQLNA-BPF进行性能验证。结果表明:中心频率可在1.68 GHz~4.32 GHz范围内调谐,调谐量达2.64 GHz;最大和最小Q分别达到83.6和33.6;噪声范围为6.04 dB~8.83 dB;在中心频率为3.69 GHz时,输入1 dB压缩点为-7.3 dBm,稳定系数μ>1;静态功耗小于18 mW。  相似文献   

2.
针对传统全差分有源电感在高频下品质因子Q较低的问题,联合使用Cascode拓扑和RC反馈网络对其进行优化。组合电路引入的双重负阻有效抵消了有源电感的寄生电阻,进而有效提高了高频下的Q值。基于Jazz 0.35 μm SiGe BiCMOS工艺,利用射频仿真软件ADS完成电路设计与仿真。仿真结果表明,在联合采用了Cascode拓扑和RC反馈网络后,在频率大于1 GHz时,有源电感的Q值明显提高;在1.3~3 GHz频率范围内,Q值均大于20;在2.1 GHz时,Q值达到最大值4 416,电感值变化范围为6.9~12 nH。  相似文献   

3.
基于回转器原理,提出了一种可在较宽频带内工作、具有大电感值和高Q值、Q值相对于电感值可以独立调节的新型有源电感。在回转器的负跨导器中,引入了调制MOS管。一方面,增加了一个新的回转通路,进而增加了回转次数,实现了大电感值。另一方面,创建了一个反馈支路,减小了等效串联电阻,实现了高Q值。将为正跨导器提供偏置的电流源与负跨导器交叉耦合连接,形成负阻结构,增大了等效并联电阻,进一步提高Q值。在有源电感的输入端串接小尺寸MOS管,减小了等效输入电容,实现了高的谐振频率和宽的工作频带。对有源电感进行验证,结果表明,Q峰值可高达1 996,电感峰值可高达54 nH,工作频带为0~12 GHz。协同调节有源电感的两个外部偏置电压时,实现了Q值相对于电感值的独立调节。Q值峰值从52到995大幅度变化时,电感峰值的变化幅度仅为5.3%。  相似文献   

4.
提出了一种品质因数(Q)-频率(f)特性与电感值(L)-频率(f)特性增强的新型高线性有源电感,主要由负跨导器、新型正跨导器、Q值增强调制模块、反馈电阻、两级电平转换电路和负跨导器分流支路组成。通过多个电路单元间的协同配合和所设置的三个外部偏置端电压的联合调谐,该有源电感不但具有高Q值,Q值相对于电感值可独立调节,而且高Q峰值及电感值在不同频率下能够基本保持不变,同时也有高的线性度。验证结果表明,在6 GHz下,Q值可在275~4 471之间变化,调谐率为176.8%,而电感值的变化率仅为1.5%;在4.8 GHz、5.2 GHz、5.6 GHz和6 GHz的4个频点下,分别获得了4 480、4 469、4 473和4 471的高Q峰值,变化率仅为0.24%,且电感值分别为7.532 nH、7.467 nH、7.909 nH、7.977 nH,变化率仅为6.3%;电感值的-1 dB压缩点为-13 dBV。  相似文献   

5.
提出了一种采用LC并联谐振电路的新型差分有源电感,实现了宽的工作频带、高的Q值、较大的电感值和可调谐功能。采用无源电感和MOS晶体管可变电容构成LC谐振电路,减小了等效串联电阻和等效并联电容,在增大电感值、Q值的同时,扩大了工作频带。仿真结果表明,在2~7.6 GHz频率范围内,该新型差分有源电感的电感值大于26 nH,Q值大于138;在7.6 GHz高频下,电感值达130 nH,Q值达418,实现了宽工作频带范围内的高Q值和高电感值。与传统差分有源电感和带LC谐振电路的单端有源电感相比,该新型差分有源电感的性能较好。  相似文献   

6.
设计了一种电感值和Q峰值可相互独立调谐的高线性有源电感。该电感主要由跨导增强模块、互补共源级模块以及单端负阻模块构成。其中,跨导增强模块不仅可以作为正跨导器,并且可实现对电感值的大范围调谐;互补共源级模块不仅可以作为负跨导器,并且可改善有源电感的线性度;单端负阻模块不仅提高了Q值,并且补偿由电感值的调谐导致的Q峰值的变化。最终,通过以上模块的相互配合及其外部端口电压的协同调控,改善了有源电感的线性度,而且实现了在同一频率下Q峰值相对于电感值可大范围独立调谐以及在不同频率下电感值相对于Q峰值可大范围独立调谐的优秀性能。验证结果表明,该有源电感电感值的-1 dB压缩点为-7 dBm;在2.07 GHz的频率下,Q峰值可从240调节到1573,而电感值从11.89 nH仅变化到12.11 nH;在0.989 GHz、2.070 GHz和3.058 GHz的不同频率下,取得了493.7、501.2和508.4的高Q峰值,变化率仅为3%,而相应频率下的电感值分别为16.1 nH、13.4 nH和6.8 nH,变化率为136.7%。  相似文献   

7.
提出了一种高Q值、高线性度SiGe HBT有源电感。基于NPN SiGe HBT共发射极-共基极-共集电极结构,引入有源负阻网络,以提高有源电感的Q值。采用前馈电流源,提高了有源电感的线性度。基于0.35 μm SiGe BiCMOS工艺对有源电感进行了仿真验证,并分析了该有源电感的电感值、Q值以及线性度。该有源电感适用于对Q值、线性度要求较高的射频电路。  相似文献   

8.
微波单片有源滤波器负阻电路的实现方法   总被引:1,自引:0,他引:1  
论述了用于微波单片有源滤波器负阻电路的实现方法,给出了三种由单管FET构成的负阻电路,以及用MMIC工艺能够实现的矩形螺旋电感与FET实现的负阻电路,并对电路进行了详细的分析与计算机模拟,分析与模拟结果显示用单管FET实现的负阻电路结构简单,在谐振频率点,最大负阻值可达几千欧姆,而且,综合出的负阻电路完全可以用现有的MMIC工艺实现,为进一步设计微波有源滤波器打下了良好的基础。  相似文献   

9.
本文介绍了一种由微波单片集成电路(MMIC)工艺实现的高Q值微波有源电感新型结构,其电路原理图由四个微波场效应晶体管(MESFET)和一个电容所组成。这种微波有源电感具有工作频率高,电感值不受晶片大小的限制,并且可以受直流偏压的控制。这种微波有源电感及其实现的有源电路(微波有源滤波器、有源匹配网络等),在微波电路微型化方面具有较高的实用价值。  相似文献   

10.
提出一种品质因数(Q)-频率特性(Q-f特性)和对工作电压波动鲁棒性增强的新型有源电感。首先,通过回转器、直流偏置电路、分流支路三个构成模块的相互配合和它们的外部偏置端电压的协同调节,增强了Q-f特性,即实现了在同一频率下Q峰值相对于电感值可大范围独立调节以及在不同频率下Q峰值保持基本不变的2种Q值特性;其次,通过设置由感知单元与放大单元构成的稳压模块,增强了电感值和Q峰值对工作电压波动的鲁棒性。结果表明,在频率3.84 GHz下,Q值可从636调节到4032,调节率高达533%,而电感值变化率仅为0.13%;在3.84 GHz、2.40 GHz和1.54 GHz不同频率下,分别取得4032、4039和4043的高Q峰值,Q峰值变化率仅为0.2%;电感值和Q峰值的工作电压敏感度分别为0.011 nH/mV和20.0 /mV。  相似文献   

11.
This letter presents a low-power single-ended active inductor with its Q-factor enhanced by feedback. Without sacrificing the self-resonance frequency and increasing the DC power consumption of the main circuit, the feedback transistor introduces a negative resistance; therefore, high Q-factors can be achieved in a wide operating frequency range. The proposed inductor was designed in a 0.13 μm CMOS process and simulated using Cadence Spectre. The active area is ~4 μm × 5 μm. With ~0.1 mW power consumption, the designed active inductor shows a 17 GHz maximum self-resonance frequency and a 1–8 GHz peak-Q operating frequency range. Using this active inductor, a 3-bit digitally-controlled phase shifter was designed. The phase shifter can provide a phase shift range larger than 180° from 1.5 to 4 GHz and a return loss better than 10 dB.  相似文献   

12.
This paper presents a low power tunable active inductor and RF band pass filter suitable for multiband RF front end circuits. The active inductor circuit uses the PMOS cascode structure as the negative transconductor of a gyrator to reduce the noise voltage. Also, this structure provides possible negative resistance to reduce the inductor loss with wide inductive bandwidth and high resonance frequency. The RF band pass filter is realized using the proposed active inductor with suitable input and output buffer stages. The tuning of the center frequency for multiband operation is achieved through the controllable current source. The designed active inductor and RF band pass filter are simulated in 180 nm and 45 nm CMOS process using the Synopsys HSPICE simulation tool and their performances are compared. The parameters, such as resonance frequency, tuning capability, noise and power dissipation, are analyzed for these CMOS technologies and discussed. The design of a third order band pass filter using an active inductor is also presented.  相似文献   

13.
提出了一种使用品质因数增强型的有源电感的射频带通滤波器,描述了在宽射频频段上可调谐的品质因数增强型的有源电感设计技术,而且解释了与有源电感噪声和稳定性相关的问题.该滤波器采用0.18μm CMOS工艺制造,它所占用芯片的有效面积仅为150μm×200μm.测试结果表明:该射频滤波器中心频率为2.44GHz时,3dB带宽为60MHz,中心频率可在2.07~2.44GHz范围内调谐,1dB压缩点为-15dBm,而静态功耗为10.8mW;在中心频率为2.07GHz时,滤波器的品质因数可达到103.  相似文献   

14.
A method to provide a low power tunable inductor is presented in which the inductance and its equivalent series resistance can be independently tuned. This equivalent series resistance can be also set to negative or zero value that is corresponding to inductor with ideal quality factor. In this method, a varactor is placed in parallel with a passive inductor and then, an active capacitor is placed in series with them. To this end, a low power Tunable Active Capacitor (TAC) is proposed which is capable of generating tunable capacitor and large negative resistance to compensate the loss of tunable inductor circuit. Also, the power consumption is low because of using a diode-connected transistor. A prototype of the proposed circuit is designed and simulated at 4 GHz. The electromagnetic simulation results show the inductance tuning range of 0.48–2.3nH with zero or even negative equivalent series resistance is obtained while the power dissipation is less than 3 mW. Moreover, noise analysis shows that higher inductance translates to lower noise while there is a weak correlation between noise and quality factor of the obtained inductances.  相似文献   

15.
This paper proposes a novel broad-band MMIC VCO using an active inductor. This VCO is composed of a serial resonant circuit, in which the capacitor is in series with an active inductor that has a constant negative resistance. Since the inductance value of this active inductor is inversely proportional to the square of the transconductance and can vary widely with the FETs gate bias control, a broad-band oscillation tuning range can be obtained. Furthermore, since this active inductor can generate a constant negative resistance of more than 50 , the proposed VCO can oscillate against a 50- output load immediately without using additional impedance transformers. We have fabricated the VCO using a GaAs MESFET process. A frequency tuning range of more than 50%, from 1.56 to 2.85 GHz, with an output power of 4.4±1.0 dBm, was obtained. With a carrier of 2.07 GHz, the phase noise at 1-MHz offset was less than –110 dBc/Hz. The chip size was less than 0.61 mm2, and the power consumption was 80 mW. This broad-band analog design can be used at microwave frequencies in PLL applications as a compact alternative to other types of oscillator circuits.  相似文献   

16.
提出了一种使用有源电感的电路实现方案,可用于宽带无线收发机射频放大电路的设计中.分析了有源电感的阻抗与各元件取值的关系,设计了中心频点调节电路和具有鲁棒性的偏置电路,保证工艺偏差和电源电压波动对有源电感的阻抗具有很弱的影响.在SMIC 0.18-μm工艺下进行了电路设计和流片验证,测试结果表明,使用有源电感的射频放大电路,可以得到期望的射频信号,其中心频点的调节范围为0.5~2 GHz, 能够抵御高达0.8 V的电源偏差.  相似文献   

17.
This paper presents the design and performance of 60-GHz-band coplanar monolithic microwave integrated circuit (MMIC) active filters. To compensate for the loss of the passive filter, a resonator composed of a quarter-wavelength line is terminated by a circuit with a constant negative resistance over a wide frequency band. Cross-coupling is introduced to make the attenuation poles on both sides of the passband. We develop two types of two-stage filter: one with medium bandwidth and the other with narrow bandwidth. The former shows an insertion loss of 3.0 dB with a 3-dB bandwidth of 2.6 GHz and a rejection of larger than 20 dB at a 3-GHz separation from a center frequency of 65.0 GHz. This filter also shows a noise figure of 10.5 dB. The latter filter shows an insertion loss of 2.8 dB with a 10-dB bandwidth of 2.1 GHz at a center frequency of 65.0 GHz. It also shows an output power of 5.0 dBm at a 1-dB compression point. The loss variation due to temperature variation is successfully compensated using a gate bias control circuit. The size of the MMIC filters is 2.5 mm/spl times/1.1 mm.  相似文献   

18.
徐曙  张万荣  谢红云  金冬月  那伟聪  张崟  杨鑫 《微电子学》2020,50(2):272-275, 280
基于回转器-电容原理,联合采用回转电容、可调反馈电阻、补偿电容和噪声抵消支路,提出了一种电感值相对于Q值可独立调节的低噪声有源电感。通过改变正-负跨导器之间的回转电容值来实现电感值的调节。因调节电感值而引起的Q值变化,可通过调节正-负跨导器之间的可调反馈电阻值和伪差分对之间的补偿电容值来共同补偿,从而实现电感值相对于Q值的独立调节。通过噪声抵消支路来降低有源电感的噪声。对该有源电感的性能验证表明,协同调节3个外部偏置电压,可实现电感值相对于Q值的独立调节,在电感峰值变化幅度为175.49%时,Q值的峰值变化幅度仅为4.88%。在0~6 GHz内,有源电感的输入参考噪声电流均小于45 pA·Hz-1/2,噪声较低。  相似文献   

19.
A novel CMOS active inductor approach, which can improve the quality-factor, was presented in this report. A cascode-grounded active inductor circuit topology with a feedback resistance was proposed, which can substantially improve its equivalent inductance and quality-factor. This feedback resistance active inductor was implemented by using a 0.18-/spl mu/m 1P6M CMOS technology, which demonstrates a maximum quality-factor of 70 with a 5.7-nH inductance at 1.55 GHz, where the self-resonant frequency is 2.5 GHz. The dc power consumption of this active inductor is less than 8 mW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号