首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 204 毫秒
1.
淮南矿区为典型高瓦斯矿区,煤层碎软、渗透率低、瓦斯含量偏高、抽采难度大,为探讨地面煤层气顶板分段压裂水平井在矿区的技术可行性与瓦斯治理效果,在分析矿区主要煤层13-1煤储层特征基础上,采用应力解除法进行了煤层三向地应力测试,结果显示三向应力场类型主要为σh,max>σv>σh,min,具有实施顶板分段压裂水平井技术的充分条件;利用MFrac Suite软件分别模拟了水平段距离煤层1、3、5 m时的压裂缝参数,压裂缝半长最大107.33 m、最小89.47 m,具有理想的压裂效果,说明顶板分段压裂水平井在淮南矿区具有比较好的地质适应性与可行性。以潘一煤矿13-1煤层“L”型顶板分段压裂水平井CBM01井为研究对象,采用井下钻孔检测与数值模拟等手段综合分析了瓦斯治理效果,结果显示CBM01井抽采415 d即显著降低了煤层瓦斯压力与瓦斯含量,距离水平井50、65 m处瓦斯压力由6.4 MPa分别降至2.6、2.7 MPa,降低幅度均超过55%,水平段两侧各15~20 m范围内瓦斯含量由13.5 m3/t降至最大9.11 m3/t、最小6...  相似文献   

2.
针对碎软煤层瓦斯灾害频发、瓦斯抽采困难、顺煤层水平井钻进困难的问题,在借鉴“虚拟储层”思路和页岩气开发技术的基础上,以新田矿区9号煤层为对象,研究分析了煤层顶板L型水平井分段压裂抽采技术。通过目标区及目标层位优选、井身结构优化、井眼轨迹精准控制技术、多簇定向射孔分段压裂精确优化工艺技术及排采作业精细控制技术,形成了煤层顶板L型水平井煤层气高效抽采技术体系。结合工程实践,顶板L型水平井在新田矿区取得了产能突破,最高日产气量达到了5 334 m3/d,并获得了长期稳产高产的试验结果。顶板L型水平井分段压裂高效抽采技术的成功应用,为具有类似地质条件的高突矿井煤层气抽采及煤矿区瓦斯治理提供了技术方向引领。  相似文献   

3.
通过对石嘴山矿区6煤层煤层气地质特征分析,运用COMET3煤层气储层模拟软件对MY2、MY4两口井6煤层排采数据历史拟合,建立6煤层水平井水力多级压裂簇间距模拟模型。分别模拟6煤层20、40、60、80、100 m这5种压裂簇间距10 a产能潜力,分析水力压裂簇间距对水平井产气效果的影响,模拟结果表明石嘴山矿区6煤层水平井水力多级压裂簇间距为60~80 m较为合适。  相似文献   

4.
碎软低渗煤层的煤层气高效抽采一直是制约我国煤层气产业化发展和煤矿瓦斯灾害防治的技术瓶颈。以安徽淮北矿区芦岭煤矿8号碎软低渗煤层为研究对象,通过开展现场调研、分析测试、理论分析、水力压裂物理模拟和数值模拟等工作,提出了碎软低渗煤层的煤层气顶板岩层水平井分段压裂高效抽采模式,揭示了该模式下水力压裂裂缝的扩展延伸规律及控制机理,构建了该模式实施的主要工艺流程。研究结果表明:顶板岩层相对脆性、裂缝扩展压力较高,碎软煤层相对塑性、裂缝扩展压力低。在顶板岩层水平井进行套管射孔和水力压裂,顶板岩层中产生的压裂裂缝,在垂向上向下扩展伸延并穿入碎软煤层;同时在水平方向上也快速扩展延伸,由此产生的牵引作用撕裂下部碎软煤层形成较长的压裂裂缝。数值模拟结果显示,在给定的压裂施工参数条件下,顶板岩层中压裂在碎软煤层中形成的压裂裂缝长度,是直接在碎软煤层中压裂形成的压裂裂缝长度的6.7倍。碎软煤层和顶板岩层中形成的这些压裂裂缝在后续加砂压裂过程中被充填,成为煤层气从下部煤层向顶板岩层水平井运移的导流通道。显然,采用这种抽采模式,碎软低渗煤层可以获得良好的压裂改造效果。研究成果应用于淮北矿区芦岭煤矿煤层气顶板岩层水平井抽采示范工程,取得了很好的产气效果,水平井单井曾连续3,6,12个月平均日产气量分别为10 358,9 039,7 921 m3,截至2017-11-16,已累计产气500万m3,日产气量仍在3 200 m3以上,创造了我国碎软低渗煤层的煤层气水平井气产量的新记录。  相似文献   

5.
为提高煤层的瓦斯抽采效果,以阳泉矿区15#碎软煤层为研究对象,对煤层及其底板岩层特征进行分析,融合煤层底板梳状长钻孔和分段水力压裂技术,形成针对各个梳状分支孔的分段压裂方式,并理论分析了该方式水力压裂裂缝扩展延伸规律。试验研究了满足分段压裂技术要求的梳状长钻孔设计与施工工艺,构建了基于裸眼封隔器+滑套投球分段压裂工具组合的压裂参数设计和压裂施工工艺流程,最终形成梳状长钻孔主孔长度534 m,分支孔5个,主孔下入分段压裂工具串490 m,实现了4个分支孔分段压裂,单段最大注水量611 m3,最大泵注压力17.18 MPa;与常规的穿层钻孔瓦斯抽采技术对比,试验后瓦斯抽采浓度提高了10.53倍,百米钻孔瓦斯抽采量提高了2.02倍。  相似文献   

6.
许耀波  郭盛强 《煤炭学报》2019,44(4):1169-1177
针对软硬煤复合煤层的煤层气抽采效率低、煤层纵向剖面上抽采不均衡等问题,为了实现大面积快速、整体高效抽采煤层气,以沁水盆地赵庄井田3号煤层为例,对软硬煤分层特征进行精细评价,优化了软硬煤复合煤层中的局部硬煤段,研究了硬煤层中不固井水平井分段压裂开发煤层气技术方法,在对水平井压裂裂缝扩展规律研究的基础上,研究了分段压裂水平井开发煤层气技术对策。研究结果表明:3号煤层软硬煤结构分层明显,软硬煤存在明显的自然伽马和电阻率测井响应特征;硬煤层中水平井压裂能形成一条复杂不规则的垂直裂缝,裂缝易于沿脆性较强的顶板岩层扩展延伸,裂缝能够扩展延伸进入软煤层,提高软硬煤的压裂增产效果;硬煤层中水平井位置和压裂施工排量是影响裂缝扩展效果的两个因素,压裂施工排量影响程度较大、水平井位置影响程度较小。针对这一特点,进一步研究了硬煤层中不固井水平井分段压裂开发煤层气4个关键技术:①水平井射孔、压裂段优选工艺技术;②油管拖动大排量水力喷射防窜流工艺技术;③"大排量、大规模、中砂比"的段塞式清水携砂压裂工艺技术;④气/水分井同步生产精细化排水采气技术。工程试验证明,该技术能大幅度提高煤层气水平井单井产量,突破了软硬煤复合煤层低产技术瓶颈,为软硬煤复合煤层的煤矿区煤层气抽采和瓦斯灾害治理提供了技术途径。  相似文献   

7.
为了提高煤矿井下单一低渗煤层瓦斯抽采效果,基于普通中、短钻孔水力压裂技术在瓦斯治理方面存在的弊端,结合煤储层地质条件和定向钻进技术特点,提出了井下定向长钻孔水力压裂瓦斯高效抽采技术,总结了长钻孔整体压裂和围岩梳状孔分段压裂2种水力压裂模式,分析了施工工艺和关键技术,以阳泉矿区为例,进行了定向长钻孔水力压裂试验,并考察了其效果。结果表明:长钻孔整体压裂采用基于扩张式封隔器原理的快速封孔技术,可在10 min内实现封孔工具组合快速坐封。梳状孔分段压裂施工采用裸眼封隔器滑套分段压裂工艺,利用孔口投球方式依次打开各级投球滑套,完成各个分支钻孔注水压裂作业。水力压裂影响范围内煤体全水分随着与钻孔距离的增大呈现先增大、后减小的现象,煤层瓦斯含量与煤体全水分呈现相反的分布特征。压裂过程中巷道受力变形现象明显,放喷初期水流大量携粉,排粉量达到6.5 t。长钻孔整体压裂和梳状孔分段压裂的最大影响半径分别达到58 m和60 m,比常规压裂钻孔增大2.32倍和3.53倍,平均瓦斯抽采纯量达1.51 m3/min和0.25 m3/min,比常规压裂钻孔提高24.40倍和13.89倍。分析认为压裂过程存在水驱气效应,且压裂对煤储层改造效果在空间上存在不均衡性。煤岩体吸水后发生体积膨胀和软化现象,改变了钻孔周围应力场的分布,导致了巷道受到挤压破坏发生变形。梳状孔分段压裂过程中围岩中裂缝通过牵引作用与煤层中压裂裂缝沟通,进而形成新的煤储层裂隙网络系统,有利于提高瓦斯抽采效果。  相似文献   

8.
针对新景矿瓦斯涌出量大、煤层透气性差、瓦斯抽放效率低等问题,通过阐述水力压裂技术起裂机理和裂缝扩展机理以及采用数值模拟手段分析煤层裂缝扩展效果,并将该技术运用到新景矿山西组3~#煤层,使得煤层透气性得到了明显改善。压裂区的瓦斯抽采浓度为47%~55%,而未压裂区的钻孔抽放浓度仅为25%~37%,提高了1.5倍;压裂钻孔瓦斯抽采量基本维持在5 m3左右,而未压裂区仅为3 m3左右,提高了1.7倍。这表明,瓦斯抽采量和瓦斯抽采浓度得到了有效提升,改善了该煤层的瓦斯抽采效果。  相似文献   

9.
低透气性突出煤层顺层钻孔预抽回采工作面瓦斯具有工程量大,抽采效率低等特点,为此,采用顺煤层分段水力压裂实现煤储层增透。寺家庄矿15#煤层属于低透气性突出煤层,在15301工作面开展了顺煤层分段水力压裂强化抽采试验,利用自主研发的拖动式双封隔器分段封孔装备及工艺,满足压裂孔稳定、快速封隔,可实现全孔段分三段及以上逐级开展压裂。对比压裂区和非压裂顺层钻孔瓦斯抽采效果,压裂区平均浓度为35.1%,非压裂区为6.0%,压裂区浓度是非压裂区的5.9倍;压裂区百孔纯量为3.6 m3/min,非压裂区为0.3 m3/min,压裂区百孔纯量是非压裂区的11.2倍。  相似文献   

10.
晋城矿区煤层含气量高、渗透率低,单一的地面或井下抽采效果不理想,为使煤矿安全开采,须结合井下长钻孔部署的局部范围卸压增渗的瓦斯预抽技术,使煤层渗透性得到成倍提高。采用微地震法及电位法等人工裂缝监测技术,对试验井压裂的裂缝形态和有效半径进行了评价,以试验区百米钻孔瓦斯流量、瓦斯浓度等相关参数作为考察对象,分析研究了地面压裂与井下长钻孔施工的时空衔接关系。研究结果表明:试验区地面井压裂影响范围呈椭圆区间,长半轴为120~150 m,短半轴为50~80 m,裂缝形态以水平裂缝为主;压裂影响区内百米钻孔瓦斯流量是压裂区外的1.33~17.50倍,瓦斯体积分数平均提高了35%;地面压裂与井下抽采衔接越紧密抽采效果越好,地面压裂施工后优先施工稳定性较好的煤层顶板钻孔,待压裂裂缝与煤体达到新的动态平衡后再施工顺煤层钻孔;综合考虑抽采效果及井下安全,压裂井井底与已掘巷道、已施工钻孔距离150~200 m为宜。  相似文献   

11.
为解决大佛寺煤矿特厚煤层透气性和瓦斯赋存差异性较大而导致的矿井抽掘采接替问题,提出“分段压裂延展裂隙+整体压裂沟通网络”的定向长钻孔水力压裂技术,通过增加煤层渗透性来提高矿井瓦斯抽采效率,并在40103工作面进行工程应用试验。共完成4个定向长钻孔分段水力压裂施工,累计压裂工程量2 190 m,最大泵注压力17.83 MPa,累计压裂注水量4 535 m3,总压裂时间10 853 min。相比于未压裂的预抽钻孔,压裂后瓦斯抽采浓度提高了2.20~4.22倍,百米抽采流量提高了4.93~11.03倍。试验结果表明,通过水力压裂后煤层渗透特性增加,瓦斯抽采效果显著提升,初步证实了长钻孔水力压裂强化瓦斯抽采技术的适用性,为彬长矿区的矿井瓦斯高效抽采提供了技术支撑。  相似文献   

12.
为提高新元煤矿低透高突煤层的瓦斯抽放效果,对瓦斯抽采钻孔进行气相压裂后的瓦斯抽采半径进行了研究。通过理论分析得出,合理布置钻孔间距是提高瓦斯抽采量的有效方式,增加钻孔孔径和抽采负压受到诸多条件的限制。通过现场实测得出,原始钻孔瓦斯流量衰减系数为0.102/d~0.129/d,压裂后变为0.018/d~0.051/d,煤层由难抽采改造成为可以抽采的类型;原始钻孔在抽采60d后,瓦斯抽采半径维持在0.82m左右,压裂后的抽采半径从30d的1.62m逐渐增加到150d的3.52m,压裂后的抽采有效半径提高了2.1~4.3倍。研究将为低透高突煤层矿区的瓦斯抽采工程治理提供借鉴。  相似文献   

13.
《煤矿安全》2016,(6):147-150
针对珲春矿区赋存的煤层具有低煤阶、透气性好和高瓦斯的特点,开展了水力压裂技术工业试验,对比分析了压裂区域内外高位钻孔瓦斯抽采浓度及本煤层预抽钻孔压裂前、后抽采参数、工作面瓦斯涌出量和降尘效果。试验结果表明:压裂区域内高位钻孔抽采瓦斯浓度较压裂区外平均提高2.65倍;压裂后本煤层预抽钻孔瓦斯抽采浓度较压裂前平均提高1.83倍,流量平均提高39倍;回采工作面的瓦斯涌出量由压裂区域外的23 m~3/t降低到第1阶段压裂区域的9.82m~3/t和第2阶段压裂区域的7.51 m~3/t;压裂影响半径达20~34 m,本煤层预抽钻孔间距也大大增加。  相似文献   

14.
为解决阳泉矿区低透气性松软煤层瓦斯抽放难、突出危险性大的问题,阳煤新景矿开展定向长钻孔水力压裂技术试验。结合水力压裂原理及增透目的对钻孔合理布孔进行了研究,逐步完善水力压裂装备和工艺,顺利完成现场注水压裂。通过卸压增透和抽采效果分析,透气性提高了2.67倍,压裂影响范围达到58m。瓦斯日抽采量达到2415m3,瓦斯含量下降了4.94m3/t。  相似文献   

15.
徐建军 《煤炭技术》2020,39(1):128-130
为了提高碎软煤层条带瓦斯抽采效率和效果,基于目前地面瓦斯抽采主要采用垂直井或从式井的方式抽采效果差、效率低的现状,通过理论和实验分析论证了穿岩层压裂改造煤储层的可行性,提出了在目标煤层顶板岩层中钻水平井,并通过垂直向下射孔以及采用泵送桥塞分段进行压裂的方式进行地面瓦斯抽采。试验结果表明:顶板分段压裂水平井单井产量高、高稳产期更长、产量衰减更慢;有效水平井段控制区域内瓦斯下降均匀,更有利于进行条带瓦斯抽采;相同投资条件下,采用水平井的方式瓦斯抽采效率和投入产出比更高。  相似文献   

16.
为了解决淮南矿区突出煤层透气性差,原始煤层中钻孔抽采瓦斯流量小,预抽时间长的难题,开展了水力压裂增透技术研究,并在1351(3)工作面进行了试验,对水力压裂效果进行了考察。试验表明:水力压裂增透技术可以扩大煤层中的孔隙和裂隙,增加煤层的透气性,水力压裂影响半径不小于60 m,受水力压裂影响区域与原始煤体区域相比,单孔抽采量增加了260%,单位面积抽采纯量增加了45%,钻孔量减少40%。  相似文献   

17.
为保障新建突出矿井揭煤安全,提高地面瓦斯抽采井的抽采消突效果,对官寨煤矿瓦斯抽采井井型选择、瓦斯抽采工艺和技术、抽采效果预测等方面开展研究。结果表明:在地质构造复杂地区进行地面瓦斯抽采时,由于断层发育、煤层赋存不稳定,不宜施工水平井,采用垂直井和定向井更具有针对性和适用性;对具有突出危险性的煤层20 m范围进行射孔,并采用"泵送桥塞分段压裂"进行水力压裂改造,压裂完成后,对改造煤层进行合层抽采,抽采效果较好。工程实践表明,采用地面瓦斯抽采井进行瓦斯抽采能有效降低煤与瓦斯突出危险性,保障井筒安全施工。  相似文献   

18.
淮南矿区瓦斯卸压抽采理论与应用技术   总被引:4,自引:4,他引:0  
基于淮南矿区高瓦斯煤层群开采条件,运用卸压开采及采场采动裂隙O形圈卸压瓦斯抽采理论,提出了一系列钻孔或巷道抽采卸压瓦斯方法;研究分析了开采卸压层时瓦斯抽采技术、上向卸压瓦斯抽采技术、下向卸压瓦斯抽采技术,采用煤层气开采消突试验方法有底板岩巷穿层钻孔条带预抽瓦斯、顺层钻孔预抽本煤层瓦斯、地面钻井压裂预抽瓦斯,这些方法广泛应用于淮南矿区生产实践,建立起了卸压开采瓦斯抽采工程体系.结果表明:自1998 年以来矿井杜绝了瓦斯爆炸事故发生,百万吨死亡率由4.01降低到0.18,2009年瓦斯抽采量达3.2亿m3,矿井瓦斯抽采率达到53%,采煤工作面瓦斯抽采率达到90%以上;使高瓦斯突出煤层转变为低瓦斯无突出危险煤层,同时抽采出的瓦斯作为绿色能源,减少大气污染.  相似文献   

19.
碎软低透突出煤层定向长钻孔整体水力压裂高效增透技术   总被引:1,自引:0,他引:1  
针对碎软低透突出煤层增透范围小、衰减速度快、抽采有效周期短等问题,以阳泉矿区15#煤层为研究对象,分析了长钻孔压裂增透机理,提出与煤层定向长钻孔相结合的煤矿井下长钻孔整体压裂增透技术。结合自主研发的整体压裂装备和工艺技术,实现了压裂钻孔的快速、稳定封孔,一次性压裂段孔长202 m的整体水力压裂施工,累计注水量2865m~3,最大泵注瞬时流量57.75 m~3/h,最大注水压力14.8 MPa。检测结果表明:压裂增透施工后,煤层透气性系数提高了4.88倍,最大影响半径达到了60m,流量衰减系数降低至压裂前的0.13倍,瓦斯含量降低至原始含量的0.55倍,实现了增透范围大、抽采时效长的瓦斯抽采效果,为碎软低透突出煤层强化增透和井下瓦斯高效抽采提供了技术保障。  相似文献   

20.
曹运兴  张军胜  田林  翟红  傅国廷  唐军华 《煤炭学报》2017,42(10):2631-2641
为解决低渗透煤层瓦斯抽采难题,在潞安矿区5 a多的研究和规模化现场试验基础上,提出了一种低渗透煤层CO_2气相定向多簇压裂瓦斯综合治理技术。该技术是应用改进后的CARDOX装置系统所产生的高压CO_2气体在煤层中进行定向多簇造缝,实现煤层的卸压和增透,均化和改善局部地应力集中和瓦斯含量/压力的异常分布状态,提高瓦斯抽采效率。研究表明,在气相压裂试验区段,瓦斯突出危险性降低,煤层渗透率提高1~2个数量级,瓦斯抽采浓度和流量提高1个数量级,抽采达标时间由原来的720 d减少到210 d,实现了高瓦斯煤层的安全掘采协调生产。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号