首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
介绍了针对低渗难抽采煤层的增透强抽新型二氧化碳气相压裂技术,并通过现场试验测试了原始煤层与实施气相压裂后煤层透气性系数与钻孔瓦斯衰减系数的变化。通过数据分析表明,气相压裂技术能显著增加钻孔周围煤层有效裂隙数量,提高煤层透气性,降低钻孔瓦斯衰减程度,提高低渗透难抽采煤层瓦斯抽采效率。  相似文献   

2.
《煤》2016,(3):3-6
文章简要介绍了一种新型煤层增透技术——二氧化碳气相压裂,并通过现场试验测试了试验区域原始煤层与气相压裂后有效抽采半径与钻孔瓦斯抽采量。通过数据分析认为,原始煤层有效抽采半径为58 d达到1.5 m,实施气相压裂后,煤层有效抽采半径为57 d达到3 m,抽采钻孔有效抽采半径有明显增加,并且气相压裂后钻孔瓦斯抽采量提高2倍以上。  相似文献   

3.
为了研究CO_2致裂增透技术对贵州低渗透煤层瓦斯抽采的影响,以贵州宏发煤矿1903工作面回风巷为研究对象,进行CO_2致裂增透试验研究。研究表明:煤层致裂后,其透气性系数平均为原始煤层的3.05倍,煤层的透气性显著提高;煤层瓦斯平均抽采浓度增大了4.19倍,平均抽采纯量为原始煤层的3.99倍;在钻孔瓦斯抽采率方面,单孔的瓦斯抽采效果提高了2.58~3.92倍;钻孔工作量降低了4倍,抽采达标时间缩短了55d,瓦斯涌出量降低了40%,煤层瓦斯抽采效益显著。CO_2致裂增透技术为解决贵州矿区低透煤层的瓦斯抽采技术难题提供了参考和借鉴。  相似文献   

4.
张东明  白鑫  尹光志  饶孜  何庆兵 《煤炭学报》2018,43(7):1938-1950
如何实现深部煤层瓦斯的高效抽采是保障我国煤炭企业安全生产的重要问题,而低透气性煤层瓦斯储层增产改造则是其中的核心技术和热点问题。为解决低透气性煤层瓦斯高效抽采技术难题,研究提出了地应力条件下优势射孔致裂方向的确定方法及低渗煤层液态CO_2相变定向射孔致裂增透技术,现场试验及应用研究形成了液态CO_2相变定向射孔致裂增透网格式瓦斯抽采方法。研究表明:孔壁破裂压力受钻孔方位角、倾角影响具有明显的方向性,并确定了试验区液态CO_2相变定向射孔优势致裂方向;该技术可有效增加煤样孔隙度、孔径、比表面积、可见孔比例等,改善煤岩体内孔隙结构及渗流能力,提高瓦斯抽采纯流量9~12倍,降低煤层瓦斯抽采流量衰减系数92%;现场试验及PFC2D数值模拟研究确定了该技术的影响半径为9~13 m;应用表明液态CO_2相变定向射孔致裂增透网格式瓦斯抽采方法,可有效预防低透气高突煤层巷道掘进期间的瓦斯超限问题,提高巷道掘进速度4~5倍。  相似文献   

5.
针对低透气性碎软煤层普遍存在的瓦斯抽采效果差的技术问题,研究了多点定向长钻孔水力压裂高效瓦斯抽采技术,探讨了碎软低透气性煤层的水力压裂增透机理;在施工多点定向长钻孔、井下水力压裂快速封孔装备的基础上,进行了煤矿井下水力压裂现场试验;分析了压裂过程中参数变化规律,提出了水力压裂影响范围、压裂效果和瓦斯抽采效果评价方法,并进行了效果考察。结果表明:该技术提高了井下水力压裂封孔效率和施工质量,改善了试验区域的煤储层参数,水分提高了4.31倍,透气性提高了4.88倍;水力压裂影响范围沿钻孔径向影响范围50~60 m;沿着钻孔轴向最大影响范围约40 m。压裂后连续抽采233 d累计抽采纯瓦斯量为25.14×10~4m~3,日最高抽采量3 077.41 m~3/d,瓦斯含量降低了34.67%。  相似文献   

6.
为了提高井下低透气性煤层瓦斯抽采钻孔瓦斯抽采效果,开发了适合中等偏硬低透煤层裸眼钻孔高压稳定封孔装备,采用了本煤层定向长钻孔整体水力压裂增透技术,分析了本煤层定向长钻孔水力压裂增透机理,并进行了水力压裂强化增透试验。根据压裂施工过程中压裂参数变化规律,利用压裂前后煤层全水分和钻孔瓦斯参数变化对比,综合考察和评价了水力压裂增透效果和影响范围。研究表明:压裂过程中最大注水压力24.6MPa,发生多次明显压降,最大压降5.2MPa。水力压裂增透后,煤层瓦斯日抽采纯量提高了12.70倍,百米钻孔瓦斯抽采量提高了2.67倍,压裂最大影响半径达到了 38m,平均超过30m,提高了瓦斯抽采效率。  相似文献   

7.
为解决大佛寺煤矿特厚煤层透气性和瓦斯赋存差异性较大而导致的矿井抽掘采接替问题,提出“分段压裂延展裂隙+整体压裂沟通网络”的定向长钻孔水力压裂技术,通过增加煤层渗透性来提高矿井瓦斯抽采效率,并在40103工作面进行工程应用试验。共完成4个定向长钻孔分段水力压裂施工,累计压裂工程量2 190 m,最大泵注压力17.83 MPa,累计压裂注水量4 535 m3,总压裂时间10 853 min。相比于未压裂的预抽钻孔,压裂后瓦斯抽采浓度提高了2.20~4.22倍,百米抽采流量提高了4.93~11.03倍。试验结果表明,通过水力压裂后煤层渗透特性增加,瓦斯抽采效果显著提升,初步证实了长钻孔水力压裂强化瓦斯抽采技术的适用性,为彬长矿区的矿井瓦斯高效抽采提供了技术支撑。  相似文献   

8.
针对试验煤矿高瓦斯低渗煤层密集抽采钻孔施工量大、抽采效果差、抽采达标时间长等问题,提出了气相压裂瓦斯快速抽采技术。试验结果显示:气相压裂后抽采量提高了4.4倍,瓦斯抽采达标时间比压裂前缩短了4/5。实践证明,气相压裂技术适用于高瓦斯低渗煤层的瓦斯抽采。  相似文献   

9.
为提高低渗、高瓦斯突出煤层煤巷条带瓦斯抽采效率,实现低渗、突出煤层煤巷条带瓦斯的快速有效治理,在2130煤矿4号煤层24223运输巷开展了井下定向长钻孔水力压裂增渗技术试验研究。试验结果表明,试验区内4号煤层水力压裂影响半径为30 m,煤层透气性提高了4.59倍,缩短了瓦斯抽采时间,提高了瓦斯抽采效果。  相似文献   

10.
为提高松软煤层瓦斯治理效果,基于液态CO_2低温、低黏度、相变高压膨胀等特性,对松软煤层进行液态CO_2压裂增透实验,考察分析压裂实验后瓦斯抽采效果,研究其变化规律。实验表明:压裂孔周围形成了由壁面位移区、纵向裂隙发育区和多裂隙发育区的压裂影响区域,压注有效影响半径不少于20 m,压裂区域抽采效果提升显著,抽采混量总体呈上升趋势,抽采浓度、抽采纯量提高近1倍,压注间隔周期为10 d,10 d后呈衰减趋势;与传统的增透方式相比在安全性、时效性存在较大优势。  相似文献   

11.
张东明  白鑫  尹光志  李树建  饶孜  何庆兵 《煤炭学报》2018,43(11):3154-3168
液态CO2相变射孔致裂增透技术作为一种有效的低渗煤层强化抽采方法,已被广泛的应用研究。但由于该技术在破岩及裂隙扩展力学机理方面研究不足,在一定程度上影响该技术进一步发展及应用。基于热工学、弹性力学、断裂力学等理论基础,建立了液态CO2相变气体射流压力模型,理论分析了液态CO2相变射孔破岩力学机理、地应力条件下裂隙扩展力学机理。采用PFC2D离散元颗粒流分析软件,进行数值模拟研究,分析了不同地应力及射流压力条件下液态CO2相变射孔破岩及裂隙分布特征。在以上研究基础上,在川煤集团白皎煤矿进行现场试验,研究表明该技术可有效提高低渗煤层瓦斯抽采效率。  相似文献   

12.
孙星 《煤》2020,29(2):18-20
针对高瓦斯、低渗煤层瓦斯预抽过程中钻孔施工困难、抽采效果不理想等问题,采用液态CO2相变致裂技术,在阳煤五矿8406底抽巷进行穿层钻孔相变致裂试验,实践表明:煤层经两次致裂后,钻孔瓦斯抽采浓度和纯量明显提高,并且瓦斯抽采衰减期得到了延长,卸压增透效果显著,为矿井的安全生产提供了可靠的技术保障。  相似文献   

13.
刘小鹏  徐刚  王云龙  李忠群 《中州煤炭》2021,(2):14-18,23
针对夏店煤矿煤巷掘进工作面瓦斯涌出量高、掘进速度慢、采掘接替紧张等问题,将气相压裂增透技术引入到掘进工作面瓦斯抽采实践中,阐明了低渗煤层气相压裂增透机理,研究分析了低渗煤层气相压裂增透装备系统和气相压裂增透工艺,并在夏店煤矿掘进工作面进行了工程应用。结果表明:气相压裂增透技术具有降低巷道瓦斯涌出浓度、促进巷道瓦斯均衡涌出、提升巷帮钻场瓦斯抽采效果和加快巷道掘进速度等多重作用;实施气相压裂措施后,抽采钻孔的瓦斯浓度、混合流量和抽采纯量得到有效提高,抽采时间内瓦斯抽采纯量是未进行气相压裂的5.12倍;掘进面前方煤体的瓦斯含量及钻屑瓦斯解吸指标K1有明显下降,其中瓦斯含量下降2 m3/t,K1值下降0.12 mL/(g·min0.5)左右;巷道掘进平均单日进尺从4.0 m提升至5.5 m,掘进速度提升显著,极大地缓解了工作面接替紧张问题,保障了工作面的安全高效开采。  相似文献   

14.
Gas drainage for the single and low gas permeability coal seam is the key technical problem hampering efficient coal mine gas drainage and without which mining safely cannot be realised in China. To solve this problem, this paper presents an engineering method for enhanced coalbed methane recovery based on high-pressure hydraulic flush from floor tunnels. The first step is to evaluate when the likelihood of coal and gas outburst reaches dangerous levels according to coal seam parameters (including coal seam gas contents, gas pressure, permeability and geological conditions). With these parameters in place, the second step is to determine and optimise borehole parameters, such as the effective influencing radius of hydraulic flush, hydraulic flush space between drills and borehole number to make sure that the coal seam stress is fully released and permeability is dramatically increased. What is also included in this step is the employment of a high-pressure hydraulic flush of coal from boreholes drilled from tunnels developed in the floor of the coal seam. Parameters of water pressure, water flow rate and the volume of coal flushed out are selected based on on-site testing and numerical modelling. Finally, numerical modelling and onsite testing are employed to validate the effects of enhanced coalbed methane recovery, which is whether or not coal and gas outburst danger is eliminated according to the national standards of China. The results show that the technology could improve the permeability of a coal seam and that the gas seepage coefficient was increased by about 10.50 times, the pre-gas drainage ratio was up to 35.5–70.4% and the borehole gas drainage experienced a process of increase-steady-decrease, which delayed 15–20 days of the attenuation time.  相似文献   

15.
针对高瓦斯低透气性煤层瓦斯抽采钻孔施工量大、效率低等问题,研究了水力压裂技术的破煤理论及高压水对煤层的卸压增透理论,提出水力压裂强化抽采瓦斯的措施,以岩土工程数值模拟软件FLAC3D对煤层进行水力压裂数值模拟,得到煤层水力压裂过程中裂纹扩展规律,确定了水力压裂现场试验的工艺参数、压裂装备及抽采系统,完成封孔及压裂试验。  相似文献   

16.
为了更好地提高煤储层的渗透率,减少水力压裂盲区,提出了井下重复水力压裂增透技术,并阐述了井下水力压裂的一般工艺流程。根据保安煤矿地质及煤层特征,设计了该矿重复水力压裂的关键技术参数,并进行了重复水力压裂试验和压裂效果检验。结果表明:未压裂区域单孔瓦斯抽采纯量和抽采浓度平均为0.0024m3/min和6.2%,压裂区域平均为0.0051m3/min和11.2%,分别提升1.13倍和0.81倍,瓦斯抽采效果提升显著;未压裂煤体透气性系数为0.007861m2/(MPa2·d),压裂后为0.317582m2/(MPa2·d),提高40倍以上;水力压裂后百米流量衰减系数由原始煤体百米流量衰减系数0.024减小到0.021,降低了12.5%。试验结果表明重复水力压裂能够有效提高井下瓦斯抽采效果,在煤矿瓦斯灾害防治中具有推广应用价值。  相似文献   

17.
With the characteristics of coal seam geology and gas occurrence, a “ground-underground” integrated gas drainage method was formed, which can relieve gas pressure and increase permeability by mining the protection seams in conditional regions. After coal seam gas drainage, high gas outburst seam was converted to low gas safety seam. In the coal face mining process, safety and high efficient coal mining were realized by the measure of gas-suction over mining. In addition to the drainage gas for civil gas and gas power generation, the Huaibei Mining Group has actively carried out research on the utilization technology of methane drainage by ventilation. On the one hand, it can save precious energy; on the other hand, it can protect the environment for people’s survival. In 2007, the amount of coal mine gas drainage was 120 hm3; the rate of coal mine gas drainage was 44%. Compared with the year 2002, the amount of coal mine gas drainage increased by two times. Meanwhile, the utilization rate of gas increased rapidly.  相似文献   

18.
为实现瓦斯隧道安全快速有效地揭煤,以正习高速公路天城坝隧道揭煤工程为背景,分析了水力压裂大范围增加煤层透气性原理与增透效果影响因素,基于水力压裂增透技术建立了多煤层瓦斯隧道揭煤防突技术体系,探讨了以超前探测、初探、精探、区域瓦斯防突及检验、工作面防突及检验、验证揭煤等为核心的揭煤防突流程,优化了瓦斯隧道水力压裂防突技术...  相似文献   

19.
水力压裂是增加煤岩体透气性的有效方法之一,针对深部水力压裂存在的问题,提出了"水-砂-水"(W-S-W)水力压裂强化增透技术,以千米深井高瓦斯煤层为研究背景,开展了W-SW水力压裂强化增透试验和常规水力压裂试验,并对增透效果进行了考察。结果表明:煤体的非均质性和孔隙裂隙分布的非均匀性导致了煤体非对称性增透,在水力压裂的作用下裂缝的扩展演化是递进循环式的,并依次经历了能量缓慢增长、微裂隙萌生、局部损伤破坏、裂缝迅速扩展、裂缝网络循环扩展演化5个阶段。高压水对煤体内部结构产生切割,形成一种高压水驱动裂隙弱面不断扩展、延伸的连锁效应,并使支撑剂(砂)楔入到裂缝端部,抑制了裂缝的闭合,增加了煤体的透气性。采用W-S-W水力压裂强化增透区域煤层的百孔抽采量最高达1.2 m~3/min,平均百孔抽采量与瓦斯体积分数分别为0.77 m~3/min,52%,与常规水力压裂区域的平均百孔抽采量0.44 m~3/min和瓦斯体积分数31%相比分别提高了0.75倍、0.68倍,与未压裂区域的平均百孔抽采量0.32 m~3/min和瓦斯体积分数24%相比分别提高了1.4倍、1.2倍,W-S-W水力压裂强化增透区域煤层的百孔抽采量与瓦斯体积分数均具有明显的峰值阶段,且稳定抽采阶段可持续45 d以上,瓦斯抽采时效性明显,实现了千米深井高瓦斯煤层大范围增透和长时高效抽采瓦斯。  相似文献   

20.
刘磊 《煤炭工程》2020,52(4):124-129
在我国煤层气的开发中普遍面临煤层具有的低压、低渗、低饱和度等自然属性问题,针对此问题,提出利用液态气体伴注辅助水力压裂改造煤层技术。文章阐述了液氮伴注技术提高煤层临界解吸压力机理和CO2驱替煤层甲烷机理,结合芦岭煤矿地面煤层气工业试验,进行了液氮伴注辅助水利压裂、液态CO2驱替煤层甲烷试验以及效果分析。结果表明:注入液氮后氮气分子会挤占煤层甲烷分子的空间,为甲烷气体提供外部能量,同时能够降低煤层甲烷分子分压,提高其临界解吸压力,促使煤层更快的解吸出甲烷气体,提高产气量,试验2号井,达到产气峰值3145.2m^3/d仅用190d,稳产期平均产气量为1400m^3/d;CO2具有的强吸附性能够与吸附态煤层甲烷发生置换作用,促使煤层甲烷更快的由吸附态变为游离态,实现煤层甲烷大量解吸的效果,同时CO2在等压条件下还能够降低游离甲烷分压,进一步提高产气量,试验3号井,实际/理论临界解吸压力比值为3.29,达到产气峰值3351.9m^3/d仅用了124d,稳产期平均产气量为800m^3/d。对比可知:液氮伴注技术优势明显,且在后续煤矿工作面回采过程中无新的CO2突出风险。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号