首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
目的:研究兰索拉唑肠溶微丸胶囊与兰索拉唑肠溶胶囊的人体生物等效性.方法:20名男性健康志愿者随机交叉单剂量口服兰索拉唑肠溶微丸胶囊(受试制剂)或兰索拉唑肠溶胶囊(参比制剂)30mg后,采用HPLC法测定血药浓度,用DAS软件计算药动学参数,并评价其生物等效性.结果:单剂量口服受试制剂兰索拉唑肠溶微丸胶囊和参比制剂兰索拉唑肠溶胶囊的主要药动学参数分别为:t1/2(1.93±0.58)、(2.21±0.84)h;tmax(1.7±0.4)、(1.7±0.4)h;Cmax(1 067.49±321.71)、(1 034.72±291.14)ng·ml-1;AUC0~12(3 655.16±1 635.82)、(3 571.70±1 434.56)ng·h·ml-1;AUC0~∞(3783.13±1 691.29)、(3 735.80±1 541.56)ng·h·ml-1.受试制剂的相对生物利用度为(106.72±13.53)%.结论:2制剂具有生物等效性.  相似文献   

2.
陈薇  邓俊刚 《中国药师》2008,11(3):299-301
目的:比较两种奥美拉唑肠溶胶囊的人体相对生物利用度,并做出生物等效性评价,以考察试验制剂的药品质量.方法:按照两制剂两周期随机交叉设计,19名男性健康志愿者单剂量口服试验胶囊(20mg×2)和参比胶囊(40mg).采用HPLC法测定血浆奥美拉唑浓度.运用DAS2.0软件计算药动学参数,并进行统计学分析.结果:单剂量口服40mg的奥美拉唑肠溶试验胶囊和参比胶囊后,AUC0?12分别为(3184.81±2055.44)ng·h·ml-1和(3062.46±1957.74)ng·h·ml-1,AUC0?8分别为(3361.55±2370.29)ng·h·ml-1和(3186.89±2042.69)ng·h·ml-1;Cmax分别为(1066.44±482.99)ng·ml-1和(1072.99±472.30)ng·ml-1;Tmax分别为(2.50±0.82)h和(2.37±0.72)h;受试胶囊对参比胶囊平均相对生物利用度为(107.33±23.44)%.结论:试验胶囊与参比胶囊具生物等效性.  相似文献   

3.
奥美拉唑肠溶胶囊的人体生物等效性研究   总被引:1,自引:0,他引:1  
目的:评价受试制剂奥美拉唑肠溶胶囊与参比肠溶胶囊的人体生物等效性.方法:22名健康男性受试者按照随机交叉试验设计,分别单剂量口服两种制剂40 mg,采用反相高效液相色谱法测定血浆中奥美拉唑的浓度,并用DAS 1.0软件对所得药代动力学参数进行统计分析.结果:受试者单剂量口服参比制剂和受试制剂后奥美拉唑的cmax分别为(0.93±0.57)和(0.98±0.52)μg/ml、tmax分别为(2.36±0.90)和(2.30±1.04)h,t1/2分别为(1.18±0.46)和(1.15±0.57)h、AUC0~8h分别为(2.48±2.09)和(2.48±1.98)μg·h·ml-1;AUC0~∞分别为(2.65±2.39)和(2.65±2.28)μg·h·ml-1.奥美拉唑肠溶胶囊的相对生物利用度为(111.1±58.1)%.结论:两制剂具有生物等效性.  相似文献   

4.
目的:评价受试制剂奥美拉唑肠溶胶囊与参比肠溶胶囊的人体生物等效性.方法:22名健康男性受试者按照随机交叉试验设计,分别单剂量口服两种制剂40 mg,采用反相高效液相色谱法测定血浆中奥美拉唑的浓度,并用DAS 1.0软件对所得药代动力学参数进行统计分析.结果:受试者单剂量口服参比制剂和受试制剂后奥美拉唑的cmax分别为(0.93±0.57)和(0.98±0.52)μg/ml、tmax分别为(2.36±0.90)和(2.30±1.04)h,t1/2分别为(1.18±0.46)和(1.15±0.57)h、AUC0~8h分别为(2.48±2.09)和(2.48±1.98)μg·h·ml-1;AUC0~∞分别为(2.65±2.39)和(2.65±2.28)μg·h·ml-1.奥美拉唑肠溶胶囊的相对生物利用度为(111.1±58.1)%.结论:两制剂具有生物等效性.  相似文献   

5.
任秀华  刘宇  陈倩  张冬林  刘东 《中国药师》2012,15(3):312-315
目的:评价兰索拉唑及其代谢产物的生物等效性.方法:用LC-MS/MS测定兰索拉唑及其代谢产物的血药浓度.20名健康男性志愿者随机分组、自身交叉口服单剂量受试制剂和参比制剂进行生物等效性评价.结果:受试制剂兰索拉唑的AUC0→t、Cmax、tmax分别为(3887.74±2 766.08 )ng·h·ml -、(1 009.95±321.73 )ng·ml-1、(2.42±0.89)h;参比制剂兰索拉唑的AUC0→t、Cmax、tmax分别为(3 895.25±2 809.82 )ng·h·ml-1、(1 150.74±480.22) ng·ml-1、(2.29±1.07)h.受试制剂5-羟基兰索拉唑的AUC0+t、Cmax、tmax分别为(278.44±106.60) ng·h·ml-1、(95.65±48.50 )ng · ml -1、(2.29±0.84)h;参比制剂5-羟基兰索拉唑的AUC0+t、Cmax、tmax分别为(291.52±131.81) ng·h·ml -、(113.81±66.36) ng ·ml-1、(2.16±1.11)h.受试制剂相比参比制剂的兰索拉唑、5-羟基兰索拉唑的人体相对生物利用度分别是(106.1%±32.7%)、(102.43%±38.87%).受试制剂相对参比制剂的兰索拉唑、5-羟基兰索拉唑主要药动学参数经交叉试验方差分析差异无统计学意义,两制剂的AUC0+t,Cmax经双单侧t检验示90%置信区间均位于有效置信区间范围内.结论:兰索拉唑的2种制剂以兰索拉唑及5-羟基兰索拉唑血药浓度数据评价,具有生物等效性.  相似文献   

6.
目的建立测定奥美拉唑血药浓度的高效液相色谱法,并考察奥美拉唑胶囊人体药代动力学,比较两种制剂的生物等效性。方法采用双周期随机交叉试验设计,18例男性健康志愿者随机分为2组,分别单剂量交叉口服奥美拉唑胶囊(受试制剂)和奥美拉唑肠溶胶囊(参比制剂)40 mg,以反相高效液相色谱法测定给药后不同时间点的奥美拉唑血药浓度,采用DAS房室模型法和生物等效性计算程序进行统计分析。结果奥美拉唑胶囊(受试制剂)和奥美拉唑胶囊(参比制剂)血药浓度-时间曲线符合一室开放模型。主要药动学参数:t1/2分别为(1.76±0.79)h和(1.66±0.52)h,Tmax分别为(2.73±0.35)h和(2.61±0.4)h。Cmax分别为(1 271.09±351.72)ng/mL和(1 219.02±325.53)ng/mL,AUC0→∞分别为(2 941.85±807.18)ng/(h.mL)和(2 960.57±802.91)ng/(h.mL)。受试制剂对参比制剂的相对生物利用度为(99.63±12.04)%。结论受试制剂与对照制剂比较,其奥美拉唑的t1/2、Tmax、Cmax和AUC0→∞均无显著性差异,两种制剂具有生物等效性。  相似文献   

7.
研究了盐酸格拉司琼口崩片的药动学,并以盐酸格拉司琼片为参比制剂,评价其生物等效性.20例健康志愿者单剂量随机交叉口服受试制剂和参比制剂各1 mg,用HPLC-荧光法测定血药浓度.受试制剂与参比制剂的主要药动学参数分别为cmax(3.32±0.93)和(3.20±0.86)ng/ml,tmax(1.65±0.52)和(1.88±0.86)h,t1/2(6.16±0.90)和(6.22±0.81)h,AUC0→t(19.50±8.10)和(19.70±7.78)ng·h·ml-1,AUC0→∞(20.90±9.11)和(21.10±8.57)ng·h·ml-1.受试制剂的相对生物利用度为(99.8±15.3)%,结果表明两种制剂具有生物等效性.  相似文献   

8.
目的 研究奥美拉唑肠溶胶囊在人体内药动学和生物等效性.方法 健康志愿者20名,随机双交叉单剂量口服通化神源药业有限公司研制的奥美拉唑肠溶胶囊(试验制剂)和海口康元制药有限公司生产的奥美拉唑肠溶胶囊(参比制剂),剂量分别为40 mg,剂间间隔为1周.分别于服药后12 h内多点抽取静脉血,用高效液相色谱(HPLC)法测定血浆中奥美拉唑肠溶胶囊的浓度.用DAS(Drug And Statistics,version 2.0)药动学程序计算相对生物利用度并评价两种制剂生物等效性.AUC0-12,AUC(0-inf)和Cmax经方差分析和双单侧t检验,Tmax进行秩和检验.结果 单剂量口服奥美拉唑肠溶胶囊试验和参比制剂后,血浆奥美拉唑的Cmax分别为(1 146.77±386.58)ng·mL-1和(1 138.93±360.90)ng·mL-1;Tmax分别为(2.40±0.53 )h和(2.28±0.44)h;AUC(0-12)分别为(4 853.61±1 960.52)ng·h·mL-1和(4743.06±1 740.71)ng·h·mL-1;AUC(0-inf)分别为(5 111.76±2 031.72)ng·h·mL-1和(4 942.71±1 833.39)ng·h·mL-1.AUC(0-12)的90%可信区间为94.6~106.3%,AUC(0-inf)的90%可信区间为96.5~107.2%,Cmax的90%可信区间为95.9~104.3%.结论 试验制剂与参比制剂的人体相对生物利用度为(101.32±14.90)%,试验制剂与参比制剂具有生物学等效性.  相似文献   

9.
目的:研究瑞舒伐他汀钙胶囊和片剂在健康人体内的药动学过程和相对生物利用度。方法:健康志愿者24名,随机双交叉单剂量口服瑞舒伐他汀钙胶囊(受试制剂)和瑞舒伐他汀钙片(参比制剂),剂量均为20 mg,采用HPLC-MS/MS测定血浆中瑞舒伐他汀钙的浓度,用DAS 3.0药动学程序计算药动学参数和生物利用度,并进行生物等效性评价。结果:单剂量口服瑞舒伐他汀钙受试和参比制剂后,血浆瑞舒伐他汀的tmax分别为(3.56±1.68)h和(3.63±1.56)h;Cmax分别为(21.17±13.74)ng·ml-1和(26.33±23.22)ng·ml-1;t1/2分别为(10.68±5.50)h和(9.04±6.00)h;AUC0-t分别为(219.31±146.09)ng·h·ml-1和(252.43±194.96)ng·h·ml-1;AUC0-∞分别为(225.32±146.76)ng·h·ml-1和(257.24±194.61)ng·h·ml-1,AUC0-t、AUC0-∞和Cmax的90%置信区间分别为81.1%~106%,81.8%~105.4%和77.9%~104.5%。受试制剂的相对生物利用度F为(100.7±54.1)%。结论:瑞舒伐他汀钙受试制剂与参比制剂具有生物等效性。  相似文献   

10.
格列美脲分散片人体生物等效性研究   总被引:1,自引:1,他引:0       下载免费PDF全文
周伦 《中国药师》2012,15(3):320-323
目的:比较两种格列美脲制剂的人体生物等效性.方法:20名健康男性志愿者随机交叉口服单剂量格列美脲分散片(受试制剂)与格列美脲片(参比制剂)2 mg,采用HPLC-MS法测定血浆中格列美脲浓度,用DAS 2.1软件计算药动学参数和生物利用度.结果:口服格列美脲受试制剂与参比制剂后的药动学参数分别为Cmax( 135.4±40.3)和(146.5±39.2) ng·ml-1,tmax(3.2±1.2)和(2.8±0.9)h,t1/2(7.3±3.9)和(6.7±2.8)h,AUC0~36 (757.1±217.2)和(849.4±250.4 )ng·h·ml-1,AUC0~∞(784.0±217.4)和(871.5±265.2) ng·h·ml-1.受试制剂的相对生物利用度为(90.7±17.5)%.结论:两种格列美脲制剂具有生物等效性.  相似文献   

11.
12.
13.
Clinical and in vitro investigations were carried out to test the efficacy of gut lavage, hemodialysis, and hemoperfusion in the treatment of poisoning with paraquat or diquat. In a patient suffering from diquat intoxication 130 times more diquat was removed by gut lavage 30 h after ingestion than was removed by complete aspiration of the gastric contents.Determination of in vitro clearances for paraquat and diquat by hemodialysis showed that, at serum concentrations of 1–2 ppm, such as are frequently encountered in poisoning in man, toxicologically relevant quantities of herbicide cannot be removed from the body. At a concentration of 20 ppm, on the other hand, hemodialysis proved to be effective, the clearance being 70 ml/min at a blood flow rate of 100 ml/min. The efficacy of hemoperfusion with coated activated charcoal was on the whole better. Especially at concentrations around 1–2 ppm, the clearance values for hemoperfusion were some 5–7 times higher than those for hemodialysis.In a patient suffering from paraquat poisoning, both hemodialysis as well as hemoperfusion were carried out. The in vitro results could be confirmed: At serum concentrations of paraquat less than 1 ppm no clearance could be obtained by hemodialysis while by hemoperfusion with activated charcoal quite high clearance values were measured and the serum level dropped down to zero.
Zusammenfassung Klinische Untersuchungen und Laboratoriumsversuche wurden durchgeführt, um die Wirksamkeit von Darmspülung, Hämodialyse und Hämoperfusion bei Paraquat- und Deiquat-Vergiftungen zu prüfen.Bei einem Patienten wurde 30 Std nach Deiquat-Aufnahme durch Darmspülung 130mal mehr Deiquat entfernt als durch vollständige Aspiration des Mageninhaltes. In vitro-Versuche ergaben, daß bei Blutserumkonzentrationen von 1–2 ppm, die bei Vergiftungen oft gemessen werden, durch Hämodialyse keine toxikologisch relevanten Paraquat- oder Deiquat-Mengen entfernt werden können. Dagegen erwies sich die Hämodialyse bei 20 ppm und einer Blutumlaufgeschwindigkeit von 100 ml/min mit einer Clearance von 70 ml/min als wirksam. Die Hämoperfusion mit beschicheter Aktivkohle war in diesen Versuchen aber eindeutig überlegen, denn insbesondere bei Konzentrationen um 1–2 ppm waren die Clearance-Werte 5–7mal höher als bei der Hämodialyse.Die in vitro-Ergebnisse wurden bei einem Patienten mit einer Paraquat-Vergiftung bestätigt: Bei Konzentrationen unter 1 ppm war die Hämodialyse wirkungslos, während durch Hämoperfusion relativ hohe Clearance-Werte erreicht wurden, so daß der Serumspiegel rasch unter die Nachweisgrenze abfiel.
  相似文献   

14.
15.
This study describes a new approach for organophosphorous (OP) antidotal treatment by encapsulating an OP hydrolyzing enzyme, OPA anhydrolase (OPAA), within sterically stabilized liposomes. The recombinant OPAA enzyme was derived from Alteromonas strain JD6. It has broad substrate specificity to a wide range of OP compounds: DFP and the nerve agents, soman and sarin. Liposomes encapsulating OPAA (SL)* were made by mechanical dispersion method. Hydrolysis of DFP by (SL)* was measured by following an increase of fluoride ion concentration using a fluoride ion selective electrode. OPAA entrapped in the carrier liposomes rapidly hydrolyze DFP, with the rate of DFP hydrolysis directly proportional to the amount of (SL)* added to the solution. Liposomal carriers containing no enzyme did not hydrolyze DFP. The reaction was linear and the rate of hydrolysis was first order in the substrate. This enzyme carrier system serves as a biodegradable protective environment for the recombinant OP-metabolizing enzyme, OPAA, resulting in prolongation of enzymatic concentration in the body. These studies suggest that the protection of OP intoxication can be strikingly enhanced by adding OPAA encapsulated within (SL)* to pralidoxime and atropine.  相似文献   

16.
In order to find out the values of the steroid resources for the future use. the compositions and contents of steroidal sapogenins from 13 domestic plants have been investigated. As a result,Dioscorea nipponica, D. quinqueloba andSmilax china were found to have large amount of diosgenin. And pennogenin inTrillium kamtschaticum andParis verticillata, yuccagenin inAllium fistulosum, hecogenin inAgave americana and neochlorogenin inSolanum nigum were appeared to be major steroidal sapogenins.  相似文献   

17.
We report herein the condensation of 4,7-dichloroquinoline (1) with tryptamine (2) and D-tryptophan methyl ester (3) . Hydrolysis of the methyl ester adduct (5) yielded the free acid (6) . The compounds were evaluated in vitro for activity against four different species of Leishmania promastigote forms and for cytotoxic activity against Kb and Vero cells. Compound (5) showed good activity against the Leishmania species tested, while all three compounds displayed moderate activity in both Kb and Vero cells.  相似文献   

18.
19.
Abstract

The uptake of metals from food and water sources by insects is thought to be additive. For a given metal, the proportions taken up from water and food will depend both on the bioavailable concentration of the metal associated with each source and the mechanism and rate by which the metal enters the insect. Attempts to correlate insect trace metal concentrations with the trophic level of insects should be made with a knowledge of the feeding relationships of the individual taxa concerned. Pathways for the uptake of essential metals, such as copper and zinc, exist at the cellular level, and other nonessential metals, such as cadmium, also appear to enter via these routes. Within cells, trace metals can be bound to proteins or stored in granules. The internal distribution of metals among body tissues is very heterogeneous, and distribution patterns tend to be both metal and taxon specific. Trace metals associated with insects can be both bound on the surface of their chitinous exoskeleton and incorporated into body tissues. The quantities of trace meals accumulated by an individual reflect the net balance between the rate of metal influx from both dissolved and particulate sources and the rate of metal efflux from the organism. The toxicity of metals has been demonstrated at all levels of biological organization: cell, tissue, individual, population, and community. Much of the literature pertaining to the toxic effects of metals on aquatic insects is based on laboratory observations and, as such, it is difficult to extrapolate the data to insects in nature. The few experimental studies in nature suggest that trace metal contaminants can affect both the distribution and the abundance of aquatic insects. Insects have a largely unexploited potential as biomonitors of metal contamination in nature. A better understanding of the physico-chemical and biological mechanisms mediating trace metal bioavailability and exchange will facilitate the development of general predictive models relating trace metal concentrations in insects to those in their environment. Such models will facilitate the use of insects as contaminant biomonitors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号