首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study describes a new approach for organophosphorous (OP) antidotal treatment by encapsulating an OP hydrolyzing enzyme, OPA anhydrolase (OPAA), within sterically stabilized liposomes. The recombinant OPAA enzyme was derived from Alteromonas strain JD6. It has broad substrate specificity to a wide range of OP compounds: DFP and the nerve agents, soman and sarin. Liposomes encapsulating OPAA (SL)* were made by mechanical dispersion method. Hydrolysis of DFP by (SL)* was measured by following an increase of fluoride ion concentration using a fluoride ion selective electrode. OPAA entrapped in the carrier liposomes rapidly hydrolyze DFP, with the rate of DFP hydrolysis directly proportional to the amount of (SL)* added to the solution. Liposomal carriers containing no enzyme did not hydrolyze DFP. The reaction was linear and the rate of hydrolysis was first order in the substrate. This enzyme carrier system serves as a biodegradable protective environment for the recombinant OP-metabolizing enzyme, OPAA, resulting in prolongation of enzymatic concentration in the body. These studies suggest that the protection of OP intoxication can be strikingly enhanced by adding OPAA encapsulated within (SL)* to pralidoxime and atropine.  相似文献   

2.
These studies are focused on antagonizing organophosphorous (OP) intoxications by a new conceptual approach using recombinant enzymes encapsulated within sterically stabilized liposomes to enhance diisopropylfluorophosphate (DFP) degradation. The OP hydrolyzing enzyme, organophosphorous acid anhydrolase (OPAA), encapsulated within the liposomes, was employed either alone or in combination with pralidoxime (2-PAM) and/or atropine. The recombinant OPAA enzyme, from the ALTEROMONAS: strain JD6, has high substrate specificity toward a wide range of OP compounds, e.g., DFP, soman, and sarin. The rate of DFP hydrolysis by liposomes containing OPAA (SL)* was measured by determining the changes in fluoride-ion concentration using a fluoride ion-selective electrode. This enzyme carrier system serves as a biodegradable protective environment for the OP-metabolizing enzyme (OPAA), resulting in an enhanced antidotal protection against the lethal effects of DFP. Free OPAA alone showed some antidotal protection; however, the protection with 2-PAM and/or atropine was greatly enhanced when combined with (SL)*.  相似文献   

3.
This investigation effort is focused on increasing organophosphate (OP) degradation by phosphotriesterase to antagonize OP intoxication. For these studies, sterically stabilized liposomes encapsulating recombinant phosphotriesterase were employed. This enzyme was obtained from Flavobacterium sp. and was expressed in Escherichia coli. It has a broad substrate specificity, which includes parathion, paraoxon, soman, sarin, diisopropylfluorophosphate, and other organophosphorous compounds. Paraoxon is rapidly hydrolyzed by phosphotriesterase to the less toxic 4-nitrophenol and diethylphosphate. This enzyme was isolated and purified over 1600-fold and subsequently encapsulated within sterically stabilized liposomes (SL). The properties of this encapsulated phosphotriesterase were investigated. When these liposomes containing phosphotriesterase were incubated with paraoxon, it readily degraded the paraoxon. Hydrolysis of paraoxon did not occur when these sterically stabilized liposomes contained no phosphotriesterase. These sterically stabilized liposomes (SL) containing phosphotriesterases (SL)* were employed as a carrier model to antagonize the toxic effects of paraoxon by hydrolyzing it to the less toxic 4-nitrophenol and diethylphosphate. This enzyme-SL complex (SL)* was administered intravenously to mice either alone or in combination with pralidoxime (2-PAM) and/or atropine intraperitoneally. These results indicate that this carrier model system provides a striking enhanced protective effects against the lethal effects of paraoxon. Moreover when these carrier liposomes were administered with 2-PAM and/or atropine, a dramatic enhanced protection was observed.  相似文献   

4.
This study describes the entrapment of squid-type diisopropylphosphorofluoridate-hydrolyzingenzyme (DFPase) within mouse red blood cells. These erythrocytesthereby gain the ability to rapidly hydrolyze alkylphosphatecholinesterase (ChE) inhibitors such as diisopropyl fluorophosphate(DFP). DFPase rapidly hydrolyzes DFP to diisopropyl phosphate.Resealed erythrocytes provide a stable carrier system that canpreserve the activity of encapsulated enzymes against otherwiserapid in vivo degradation; thus, ChE inhibitors can be degradedto relatively nontoxic metabolites by these erythrocyte carriers.Squid DFPase was purified from the hepatopancreas of Atlanticsquid and DFPase activity was determined by measuring changesin fluoride ion concentration using a fluoride ion selectiveelectrode. Mouse erythrocytes in suspension with excess squidDFPase were dialyzed against hypotonic buffer to allow the encapsulationof the enzyme to occur. Cells were then resealed by returningthe suspension to isosmotic with saline. Rate of DFP hydrolysisobserved with these cells was much greater than the rate ofnonenzymatic hydrolysis and was directly proportional to theamount of the erythrocyte suspension added to the assay solution.The rate of hydrolysis was first order in substrate. Erythrocytecontrols showed no endogenous DFPase activity. These resultssuggest that enzyme entrapment may be developed as a methodto prevent and antagonize organophosphate poisoning.  相似文献   

5.
The properties of a rat liver enzyme that hydrolyzes organophosphorus (OP) inhibitors of cholinesterases were studied. The rates of hydrolysis of OP inhibitors were determined by continuous titration of released hydrogen ions, using a pH stat method. Centrifugation of homogenates at 205,000 g for 30 min demonstrated that the activity was in the soluble fraction. Hydrolysis of sarin, soman, and diisopropyl phosphorofluoridate (DFP), but not of tabun, was stimulated by the addition of Mn2+ and Mg2+. Hydrolysis of sarin greater than soman greater than tabun greater than DFP. Unlike other OP hydrolases that preferentially hydrolyze the non-toxic isomers of soman, this enzyme hydrolyzed all four soman isomers at approximately the same rate. This result was obtained in vitro by gas chromatographic analysis of enzyme-catalyzed soman hydrolysis and confirmed in vivo by demonstrating reduced toxicity in mice of soman partially hydrolyzed by this enzyme. Km and Vmax were determined by fitting V vs [S] to a hyperbolic function using regression analysis. Km values ranged from 1.1 mM for soman to 8.9 mM for tabun. Vmax values ranged from 54 nmol/min/mg protein for DFP to 2694 for sarin. The enzyme was stable for at least 2 months at -90 degrees but was inactivated by heating at 100 degrees for 5 min. Elution profiles from gel filtration by high pressure liquid chromatography showed that the hydrolytic activity for the OP inhibitors eluted in a single peak, suggesting that a single enzyme was responsible for the observed hydrolysis. Further purification and characterization of this enzyme should prove useful for the development of methods for detection, detoxification, and decontamination of these cholinesterase inhibitors.  相似文献   

6.
Prophylactic and therapeutic efficacy against organophosphorus (OP) intoxication by pralidoxime (2-PAM) and atropine were studied and compared with sterically stabilized long-circulating liposomes encapsulating recombinant organophosphorus hydrolase (OPH), either alone or in various specific combinations, in paraoxon poisoning. Prophylactic and therapeutic properties of atropine and 2-PAM are diminished when they are used alone. However, their prophylactic effects are enhanced when they are used in combination. Present studies indicate that sterically stabilized liposomes (SL) encapsulating recombinant OPH (SL-OPH) alone can provide much better therapeutic and prophylactic protection than the classic 2-PAM + atropine combination. This protection was even more dramatic when SL-OPH was employed in combination with 2-PAM and/or atropine: the magnitude of prophylactic antidotal protection was an astounding 1022 LD(50) [920 mg/kg (LD(50) of paraoxon with antagonists)/ 0.95 mg/kg (LD(50) of control paraoxon)], and the therapeutic antidotal protection was 156 LD(50) [140 mg/kg (LD(50) of paraoxon with antagonists)/0.9 mg/kg (LD(50) of control paraoxon)]. The current study firmly establishes the value of using liposome encapsulating OPH.  相似文献   

7.
《Nanotoxicology》2013,7(2):85-92
Novel, enzyme-complexed, nano-delivery systems have been developed to antagonize the lethal effects of organophosphorus (OP) molecules such as diisopropylfluorophosphate and paraoxon. Polymeric nanocapsules can be used to deliver metabolizing enzymes to the circulation, often increasing the enzyme's efficacy by extending their circulatory life and, in some cases, enhancing their specific activity. The bacterial enzymes organophosphorus hydrolase (OPH) and organophosphorus anhydrolase (OPAA) were encapsulated within a nanocapsule, polyoxazoline-based dendritic polymer carrier and employed in combination with the OP antagonists pralidoxime (2-PAM) and atropine. The effective doses for OPH and OPAA, respectively, were 500–550 and 1500–1650 units/kg mice; the size of the entire complex is approximately 200 nm in diameter. These studies compare the efficacy of the two enzymes as prophylactic systems encapsulated within the dendritic polymer. When used in combination with 2-PAM and atropine, the dendritic encapsuled OPAA provided a 25×LD50 protection against DFP intoxication, while the similarly constructed OPH complex showed a more dramatic protection (780×LD50) against paraoxon intoxication in Balb/c mice. The studies demonstrate a synergistic enhancement of the antagonist, since the antidotal protection of 2-PAM+atropine against DFP and paraoxon is approximately 8 and 60×LD50, respectively.  相似文献   

8.
Human prolidase (PROL), which has structural homology to bacterial organophosphate acid anhydrolase that hydrolyze organophosphates and nerve agents has been proposed recently as a potential catalytic bioscavenger. To develop PROL as a catalytic bioscavenger, we evaluated the in vitro hydrolysis efficiency of purified recombinant human PROL against organophosphates and nerve agents. Human liver PROL was purified by chromatographic procedures, whereas recombinant human skin and kidney PROL was expressed in Trichoplusia ni larvae, affinity purified and analyzed by gel electrophoresis. The catalytic efficiency of PROL against diisopropylfluorophosphate (DFP) and nerve agents was evaluated by acetylcholinesterase back-titration assay. Partially purified human liver PROL hydrolyzed DFP and various nerve agents, which was abolished by specific PROL inhibitor showing the specificity of hydrolysis. Both the recombinant human skin and kidney PROL expressed in T. ni larvae showed ~99% purity and efficiently hydrolyzed DFP and sarin. In contrast to human liver PROL, both skin and kidney PROL showed significantly low hydrolyzing potential against nerve agents soman, tabun and VX. In conclusion, compared to human liver PROL, recombinant human skin and kidney PROL hydrolyze only DFP and sarin showing the substrate specificity of PROL from various tissue sources.  相似文献   

9.
The cDNA encoding human liver prolidase derived from a healthy adult's liver was cloned into the expression vector pPIC9K of Pichia pastoris to construct the recombination expression vector pPIC9K-P. The pPIC9K-P was digested by restriction enzyme Pme I, and then transformed into P. pastoris GS115 by electroporation. Transformants (the insertion recombinant) were induced by methanol to express the recombination protein. The optimal induction conditions (medium pH, methanol concentration and induction time) of the insertion transformant with the highest enzymatic activity were estimated by orthogonal experimental design L9(3(4)). The SDS-PAGE of the recombinant human prolidase (rh-prolidase) in induction medium showed a molecular weight of 73 kDa. The activities of the rh-prolidase and organophosphoric acid anhydrolases (OPAA) were assayed by colorimetric methods. The recombinant enzyme catalyzed the hydrolysis of organophosphorous compound soman as well as the hydrolysis of dipeptide Gly-Pro. Under the optimal induction conditions, the maximal activities of prolidase and OPAA came to 44.1 and 54.8 nmol/min/mg protein respectively in the medium supernatant. The rh-prolidase purified from the supernatant by ion exchange gradient chromatography (DEAE-Sepharose Fast Flow) and gel filtration chromatography (Sephacryl S-200 High Resolution) showed a single band by SDS-PAGE analysis. The purified rh-prolidase could decompose soman via hydrolytic reaction in vitro.  相似文献   

10.
The usefulness of double liposomes (DL), liposomes containing liposomes inside, as an oral vaccine carrier was examined. Ovalbumin (OVA) encapsulating liposomes sized to 230 nm (small liposomes, SL) were prepared by the glass-beads (GB) method and sequential sonication and extrusion. For the purpose of stabilizing the model antigen, DL containing SL were prepared by the GB method and the reverse-phase evaporation (REV) method. They were named GB-DL and REV-DL, respectively. The morphological structure of DL was confirmed using confocal laser scanning microscopy and scanning electron microscopy by the freeze-fracture method. DL showed suppressed release of OVA and stabilized OVA in pepsin solution as compared with SL. BALB/c mice were immunized with OVA solution, SL and DL suspension by oral administration. Significantly higher levels of IgA in feces were observed in mice immunized with SL and REV-DL as compared with OVA solution, and REV-DL tended to show the higher level of IgA than SL. REV-DL elicited significantly higher anti-OVA IgG responses as compared with OVA solution. Furthermore, GB-DL tended to raise the IgG level as compared with SL. The results suggest that DL have the potential to be an effective carrier for oral immunization.  相似文献   

11.
INTRODUCTION Mazur[1]first described the hydrolysis and detoxi-fication of diisopropylfluorophosphate (DFP) usingcrude preparations from human and rabbit tissues in1946. Organophosphoric acid anhydrolases (OPAA,EC 3.1.8.2) have been found in a wide variety ofprokaryotes and eukaryotes such as bacteria, protozoa,Altermonas haloplanktis[7] showed prolidase activity, Isolation of prolidase gene The human liversuggesting that the OPAA may be a prolidase[8]. These …  相似文献   

12.
Metabolism of nafamostat, a clinically used serine protease inhibitor, was investigated with human blood and liver enzyme sources. All the enzyme sources examined (whole blood, erythrocytes, plasma and liver microsomes) showed nafamostat hydrolytic activity. V(max) and K(m) values for the nafamostat hydrolysis in erythrocytes were 278 nmol/min/mL blood fraction and 628 microM; those in plasma were 160 nmol/min/mL blood fraction and 8890 microM, respectively. Human liver microsomes exhibited a V(max) value of 26.9 nmol/min/mg protein and a K(m) value of 1790 microM. Hydrolytic activity of the erythrocytes and plasma was inhibited by 5, 5'-dithiobis(2-nitrobenzoic acid), an arylesterase inhibitor, in a concentration-dependent manner. In contrast, little or no suppression of these activities was seen with phenylmethylsulfonyl fluoride (PMSF), diisopropyl fluorophosphate (DFP), bis(p-nitrophenyl)phosphate (BNPP), BW284C51 and ethopropazine. The liver microsomal activity was markedly inhibited by PMSF, DFP and BNPP, indicating that carboxylesterase was involved in the nafamostat hydrolysis. Human carboxylesterase 2 expressed in COS-1 cells was capable of hydrolyzing nafamostat at 10 and 100 microM, whereas recombinant carboxylesterase 1 showed significant activity only at a higher substrate concentration (100 microM). The nafamostat hydrolysis in 18 human liver microsomes correlated with aspirin hydrolytic activity specific for carboxylesterase 2 (r=0.815, p<0.01) but not with imidapril hydrolysis catalyzed by carboxylesterase 1 (r=0.156, p=0.54). These results suggest that human arylesterases and carboxylesterase 2 may be predominantly responsible for the metabolism of nafamostat in the blood and liver, respectively.  相似文献   

13.
Fluoride ion is a reversible inhibitor of human butyrylcholinesterase (HuBChE) that is a viable drug candidate against organophosphates (OPs) toxicity. Since large numbers of communities in many countries are occasionally exposed to relatively high amount of fluoride, its effect on the kinetics of inhibition of HuBChE by OPs was investigated. In saline phosphate, pH 7.4, fluoride in the lower millimolar range significantly slowed the inhibition of HuBChE by paraoxon, DFP, echothiophate, soman, sarin, and VX. The kinetics of the inhibition was found consistent with the formation of a reversible fluoride-HuBChE complex that is at least 25-fold less active towards phosphorylation or phosphonylation than the free enzyme. Heat inactivation experiments indicate that the binding of fluoride to HuBChE probably involves enhanced cross-domain interaction via hydrogen bonds formation that may decrease enzyme activity. In spite of distinct structural differences among the OP used, the dissociation constants of the fluoride-HuBChE reversible complex varied over a narrow range (KF, 0.31-0.70 mM); however, KF in human plasma increased to 2.75-3.40 mM. 19F-NMR spectroscopy revealed that fluoride ion is complexed to plasma components, an observation that explains in part the apparent increase in KF. Results suggest that an estimate of the relative decrease in the rate of OPs sequestration in presence of fluoride can be obtained from the fraction of the free HuBChE (1 + [F]/K(F))(-1). Considering KF values in human plasma, it is concluded that the scavenging efficacy of OPs by HuBChE is not compromised by the normal concentration range of circulating fluoride ions.  相似文献   

14.
Brain neuropathy target esterase (NTE), associated with organophosphorus (OP)-induced delayed neuropathy, has the same OP inhibitor sensitivity and specificity profiles assayed in the classical way (paraoxon-resistant, mipafox-sensitive hydrolysis of phenyl valerate) or with lysophosphatidylcholine (LysoPC) as the substrate. Extending our earlier observation with mice, we now examine human erythrocyte, lymphocyte, and brain LysoPC hydrolases as possible sensitive targets for OP delayed neurotoxicants and insecticides. Inhibitor profiling of human erythrocytes and lymphocytes gave the surprising result of essentially the same pattern as with brain. Human erythrocyte LysoPC hydrolases are highly sensitive to OP delayed neurotoxicants, with in vitro IC50 values of 0.13-85 nM for longer alkyl analogs, and poorly sensitive to the current OP insecticides. In agricultural workers, erythrocyte LysoPC hydrolyzing activities are similar for newborn children and their mothers and do not vary with paraoxonase status but have high intersample variation that limits their use as a biomarker. Mouse erythrocyte LysoPC hydrolase activity is also of low sensitivity in vitro and in vivo to the OP insecticides whereas the delayed neurotoxicant ethyl n-octylphosphonyl fluoride inhibits activity in vivo at 1-3 mg/kg. Overall, inhibition of blood LysoPC hydrolases is as good as inhibition of brain NTE as a predictor of OP inducers of delayed neuropathy. NTE and lysophospholipases (LysoPLAs) both hydrolyze LysoPC, yet they are in distinct enzyme families with no sequence homology and very different catalytic sites. The relative contributions of NTE and LysoPLAs to LysoPC hydrolysis and clearance from erythrocytes, lymphocytes, and brain remain to be defined.  相似文献   

15.
Paraoxonase 1 (PON1) has been described as a potential catalytic bioscavenger due to its ability to hydrolyze organophosphate (OP) insecticides and nerve agents. In vitro catalytic efficiency of purified human and rabbit serum PON1 against different OP substrates was compared to human recombinant PON1, expressed in Trichoplusia ni larvae. Highly purified human and rabbit serum PON1s were prepared by multiple chromatography methods. Purified enzymes showed higher catalytic activity with the substrate p-nitrophenyl acetate compared to diethyl paraoxon. The hydrolyzing potential of PON1s against multiple OPs was evaluated by using an in vitro acetylcholinesterase back-titration assay. Significant differences in the catalytic efficiency of all the three PON1s with regard to various OP substrates were observed. Purified PON1s showed higher catalytic activity towards diisopropylfluorophosphate followed by diethylparaoxon compared to dimethyl paraoxon. Heat inactivation or incubation of PON1 with specific inhibitor resulted in complete loss of the enzyme catalytic activity indicating that OP hydrolysis was intrinsic to PON1. In conclusion, purified PON1s from multiple sources show significant differences in the catalytic activity against several OP substrates. These results underscore the importance of systematic analysis of candidate PON1 molecules for developing as an effective catalytic bioscavenger against toxic OPs and chemical warfare nerve agents.  相似文献   

16.
Cholinesterases of porcine left ventricular heart muscle were characterized with respect to substrate specificity and inhibition kinetics with organophosphorus inhibitors N,N'-di-isopropyl-phosphorodiamidic fluoride (Mipafox), di-isopropylphosphorofluoridate (DFP), and diethyl p-nitro-phenyl phosphate (Paraoxon). Total myocardial choline ester hydrolysing activity (234 nmol/min/g wet wt with 1.5 mM acetylthiocholine, ASCh; 216 nmol/min/g with 30 mM butyrylthiocholine, BSCh) was irreversibly and covalently inhibited by a wide range of inhibitor concentrations and, using weighted least-squares non-linear curve fitting, residual activities as determined with four different substrates in each case were fitted to a sum of up to four exponential functions. Quality of curve fitting as assessed by the sum of squares reached its optimum on the basis of a three component model, thus, indicating the presence of three different enzymes taking part in choline ester hydrolysis. Final classification of heart muscle cholinesterases was obtained according to both substrate hydrolysis patterns with ASCh, BSCh, acetyl-beta-methylthiocholine and propionylthiocholine, and second-order rate constants for the reaction with organophosphorus inhibitors Mipafox, DFP, and Paraoxon. One choline ester-hydrolysing enzyme was identified as acetylcholinesterase (EC 3.1.1.7), and one as butyrylcholinesterase (EC 3.1.1.8). The third enzyme with relative resistance to organophosphorus inhibition was classified as atypical cholinesterase.  相似文献   

17.
Recently it has been found that homogenates of Tetrahymena thermophila can hydrolyze the potent acetylcholinesterase inhibitors O,O-diisopropylphosphofluoridate (DFP) and O-1,2,2-trimethylpropylmethylphosphonofluoridate (soman). Upon purification of the DFP hydrolyzing activity 10-fold it had been noted that the soman hydrolyzing activity increased only 2-3 fold. Treatment with manganous ion and comparison of the soman and DFP hydrolysis rates of the homogenate indicated that a mixture of the squid-type and Mazur-type DFPases may be present. Subsequent purification of the enzymatic activities within the Tetrahymena-homogenate demonstrated that there are at least five functioning proteins of molecular weights 67,000 to 96,000. None are directly homologous to the DFPases found in hog kidney or squid. The enzymatic activities are designated DFPase-1 through DFPase-5. A hypothesis is presented that the functions of DFPases are in the normal metabolism of organophosphates naturally synthesized by T. thermophila.  相似文献   

18.
The reactivation of organophosphate (OP)-inhibited acetylcholinesterase (AChE) by oximes results inevitably in the formation of highly reactive phosphyloximes (POX), which may re-inhibit the enzyme. An impairment of net reactivation by stable POX was found with 4-pyridinium aldoximes, e.g. obidoxime, and a variety of OP compounds. In this study the effect of organophosphorus hydrolase (OPH), organophosphorus acid anhydrolase (OPAA) and diisopropylfluorophosphatase (DFPase) on obidoxime-induced reactivation of human acetylcholinesterase (AChE) inhibited by different OPs was investigated. Reactivation of paraoxon-, sarin-, soman- and VX-inhibited AChE by obidoxime was impaired by POX-induced re-inhibition whereas no deviation of pseudo first-order kinetics was observed with tabun, cyclosarin and VR. OPH prevented (paraoxon) or markedly reduced the POX-induced re-inhibition (VX, sarin, soman), whereas OPAA and DFPase were without effect. Additional experiments with sarin-inhibited AChE indicate that the POX hydrolysis by OPH was concentration-dependent. The activity of OP-inhibited AChE was not affected by OPH in the absence of obidoxime. In conclusion, OPH may be a valuable contribution to the therapeutic regimen against OP poisoning by accelerating the degradation of both the parent compound, OP, and the reaction product, POX.  相似文献   

19.
Highly toxic organophosphorus compounds that irreversibly inhibit the enzyme acetycholinesterase (AChE), including nerve agents like tabun, sarin, or soman, still pose a credible threat to civilian populations and military personnel. New therapeutics that can be used as a pretreatment or after poisoning with these compounds, complementing existing treatment schemes such as the use of atropine and AChE reactivating oximes, are currently the subject of intense research. A prominent role among potential candidates is taken by enzymes that can detoxify nerve agents by hydrolysis. Diisopropyl fluorophosphatase (DFPase) from the squid Loligo vulgaris is known to effectively hydrolyze DFP and the range of G-type nerve agents including sarin and soman. In the present work, DFPase was PEGylated to increase biological half-life, and to lower or avoid an immunogenic reaction and proteolytic digest. Addition of linear polyethylene glycol (PEG) chains was achieved using mPEG-NHS esters and conjugates were characterized by electrospray ionization--time of flight--mass specrometry (ESI-ToF-MS). PEGylated wildtype DFPase and a mutant selective for the more toxic stereoisomers of the agents were tested in vivo with rats that were challenged with a subcutaneous 3x LD(50) dose of soman. While wildtype DFPase prevented death only at extremely high doses, the mutant was able keep the animals alive and to minimize or totally avoid symptoms of poisoning. The results serve as a proof of principle that engineered variants of DFPase are potential candidates for in vivo use if substrate affinity can be improved or the turnover rate enhanced to lower the required enzyme dose.  相似文献   

20.
1. The inhibition of cholinesterase and carboxylesterase activities in the diisopropyl fluorophosphate (DFP) intoxication, and the inducibility of organophosphate (OP) detoxicating enzymes was studied in rats. 2. In phenobarbital (PB)-, but not in beta-naphthoflavone (NF)-pretreated rats, the activities of DFP-inhibited cholinesterases were 70-120% higher than in non-pretreated rats. Also the inhibition of the microsomal and cytosolic carboxylesterase activity in liver was efficiently antagonized by BP, but not by NF. 3. In vitro the microsomes from PB-treated rats detoxicated DFP probably by O-dealkylation, since no fluoride was released from DFP. Glutathione S-transferase did not detoxicate DFP. 4. 7-Pentoxyresorufin O-dealkylase, a specific enzyme of cytochrome P450IIB subfamily, was induced by PB, flumecinol, isosafrole and NF by 167- 61-, 26- and 1.6-fold, respectively. 7-Ethoxyresorufin O-deethylase, a marker enzyme of cytochrome P450IA subfamily, was induced by those agents 5-, 4-, 31- and 94-fold, given in the same order. Glutathione S-transferase, paraoxonase and DFPase activities were increased 0-72% by the tested inducers. 5. The results suggest that the cytochrome P450IIB subfamily, inducible by PB, participates in DFP detoxication by O-dealkylation. Its induction probably causes the protection against the cholinesterase inhibition by OPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号