首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
水平面路径跟踪是自治水下机器人(AUV)的关键技术之一,但是AUV运动方程的非线性、耦合性、水动力参数的时变性以及外部干扰都给AUV的运动控制增加了难度。应用反步法(Backstepping)设计了欠驱动AUV水平面路径跟踪滑模控制器,并利用微分器对未知状态和不确定项进行了估计。分别在静水、海流及水动力参数摄动的环境下进行了仿真,仿真结果表明该控制器的控制效果和鲁棒性都比较好。  相似文献   

2.
针对已知路径下基于领航者的多自主水下机器人(AUV)编队队形控制问题,提出了一种AUV路径控制和编队协调控制相结合的新型编队控制器。其中,AUV的路径跟踪控制采用反步滑模控制器,将AUV位置、姿态和时变速度跟踪转化虚拟速度控制,使AUV能达到期望的位置、速度等,避免了反步控制中的奇异值问题,并能够很好实现不确定的模型的控制,同时又提高了跟随者协同定位精度;在路径跟踪控制基础上,编队协调控制器将领航者与跟随者的位置误差控制转化为跟随者的速度误差控制,使跟随者能快速达到期望位置,从而使所有AUV实现期望的队形并保持。仿真实验对该控制策略进行了可行性验证,结果表明,该算法提高了编队的响应速度、控制精度和稳定性;再应用3台AUV进行了湖上试验验证,证明了该控制策略的有效性,能有效应用到实际中。  相似文献   

3.
柔性喷嘴液压驱动活塞运动位移产生误差较大,导致喷出的液体不能按照理论轨迹运动。对此,建立柔性喷嘴液压驱动模型简图,分析了喷嘴液压驱动工作原理。选择控制系统参数设计变量,建立液压驱动数学模型。引用液压驱动滑模控制器,采用遗传算法对滑模控制器进行优化,给出遗传算法具体优化流程。采用Matlab软件对不同控制方法输出的位移进行仿真验证。结果显示:采用滑模控制器,活塞实际输出位移与期望位移误差较大;而采用遗传算法优化滑模控制器,活塞实际输出位移与期望位移误差较小。采用遗传算法优化滑模控制器,液压缸驱动活塞运动反应速度快,超调量较小,活塞运动位移能够按照期望要求进行移动,使喷嘴喷出的液体更符合期望运动轨迹。  相似文献   

4.
编队控制是多机器人系统研究的核心问题之一,具有广泛的研究价值。针对编队问题,通过对轮式差分驱动机器人运动模型进行分析,并设计相应的控制器。在传统的领航-跟随模型上,引入“虚拟机器人”,将跟随者机器人对领航者机器人的轨迹跟踪转换为跟随者对“虚拟领航者”的轨迹跟踪。首先,预设定实际领航者机器人的行进路径,由实际领航者引导运动方向的运动轨迹被视为主轨迹,虚拟机器人通过数据产生参考点从而生成参考轨迹,跟随者机器人通过对参考轨迹的跟踪与“虚拟领航者”构成轨迹误差跟踪系统。然后通过Lyapunov的控制理论验证控制器的理论可行性,最后在MATLAB/Simulink仿真平台进行实验,通过改变控制参数来使机器人形成相应的期望队形,在较短的时间内,跟随机器人对参考轨迹的跟踪误差趋向于0且速度收敛,验证了编队系统的可行性。  相似文献   

5.
为了满足蛇形机器人轨迹跟踪运动的精度需要,消除外界干扰对机器人跟踪误差的影响,提出了一种蛇形机器人跟踪 误差预测的自适应轨迹跟踪控制器。 所提出的控制器实现了机器人干扰变量、摩擦系数和控制参数的预测,并用预测值和虚拟 控制函数来补偿系统的控制输入,抵消了蛇形机器人在轨迹跟踪过程中的侧滑角,避免了干扰变量对机器人带来的负面影响, 提高了轨迹跟踪的误差稳定性与控制精度。 在建立蛇形机器人模型后,利用积分形式的侧滑角补偿项改进了视线法,并设计了 蛇形机器人的自适应轨迹跟踪控制器。 使机器人的位置误差在 10 s 内实现收敛,角度误差小于 0. 03 rad,预测值误差在 5 s 内 收敛。 通过仿真实验,验证了所提出的控制器的有效性和优越性。  相似文献   

6.
Stewart平台运动轨迹容易受到外界波形的干扰,导致其运动轨迹输出误差较大,稳定性较差。对此,创建了液压驱动Stewart平台简图模型,推导了连杆动力学方程式。设计了液压驱动机构,给出了液压流量控制方程式。引用PID控制器并进行改进,设计了神经网络PID控制器。采用Matlab软件对Stewart平台两种控制方法进行仿真,将仿真结果进行对比和分析。结果显示:在无干扰环境中,两种控制器都能较好地实现Stewart平台运动轨迹的跟踪任务,差别不大;在有干扰环境中,采用PID控制器的Stewart平台运动轨迹输出误差较大,稳定性较差,而采用神经网络PID控制器,Stewart平台运动轨迹输出误差较小,稳定性较好。采用神经网络PID控制器,Stewart平台能够自适应调节控制参数,降低外界波形对平台运动轨迹的影响,提高Stewart平台运动的稳定性。  相似文献   

7.
为了提高平面机械手运动的稳定性和轨迹跟踪精度,采用小脑模型神经网络(CMAC)控制液压驱动系统,并对机械手运动轨迹响应速度和误差进行仿真.建立液压驱动机械手简图装置,给出机械手液压驱动控制流程图.创建了液压动力装置、控制阀、液压油缸及机械手键合图模型,推导出液压驱动机械手控制方程式.设计了机械手液压驱动CMAC-PID控制结构图,利用系统仿真软件Matlab对机械手运动轨迹进行仿真;同时,与常规PID控制仿真结果进行比较.结果表明:采用常规PID控制液压驱动机械手运动轨迹,响应时间大约为0.4s,产生的最大误差大约为1.4cm;采用CMAC-PID控制液压驱动机械手运动轨迹,响应时间大约为0.1s,产生的最大误差大约为0.75cm.采用CMAC-PID控制平面机械手液压驱动系统,能够提高机械手运动轨迹响应速度和跟踪精度.  相似文献   

8.
为了研究无人车运动轨迹跟踪行为并建立可行的轨迹跟踪控制器,并分析跟踪效果,建立了二自由度车辆的数学模型,以模型预测控制理论为指导,从线性误差模型、目标函数选择及约束条件等3个方面来设计无人车的MPC轨迹跟踪控制器,并对不同道路的轨迹跟踪效果进行验证。建立Carsim-Simulink联合仿真平台,分别对圆形轨迹与直线型轨迹进行仿真实验。仿真结果表明,该轨迹跟踪控制器具有有效性与可行性。  相似文献   

9.
一种欠驱动AUV模型预测路径跟踪控制方法   总被引:1,自引:0,他引:1  
《机械科学与技术》2017,(11):1653-1657
本文针对欠驱动自主水下航行器(AUV)的约束路径跟踪问题,设计了一种模型预测路径跟踪控制器。首先定义路径参数的二阶导数作为路径虚拟控制律,并将参考路径的模型扩展到AUV路径跟踪预测模型;然后采用非线性模型预测控制设计了欠驱动AUV的约束路径跟踪控制律,通过对约束优化问题的滚动求解,得到满足约束的扩展控制输入。最后采用REMUS AUV的模型参数对提出的控制律进行了仿真研究,结果说明了控制器在显式处理约束的同时,表现出良好的跟踪效果。  相似文献   

10.
当机械臂末端沿期望轨迹运动时,若障碍物影响机械臂末端运动,则末端会与障碍物发生冲突,使其偏离期望运动轨迹。针对这一问题,提出了一种任务优先级轨迹规划方法,使机械臂末端避障后能够继续跟踪期望轨迹。当机械臂末端运动轨迹中含有障碍物时,赋予避障运动作为优先控制,通过计算末端位置增量使机械臂末端产生逃离速度,进而避开障碍物;反之,赋予轨迹跟踪作为优先控制,通过对机械臂期望轨迹与实际位置进行误差控制,达到提高末端轨迹跟踪精度的目的。最后,对冗余机器人进行了仿真及试验验证。结果表明,当障碍物与机械臂末端运动轨迹发生冲突时,基于任务优先级的轨迹规划方法可以使机械臂末端有效地避开障碍物,同时,末端避障后机械臂仍能跟踪到期望轨迹运动。  相似文献   

11.
针对轮式机器人轨迹跟踪问题,提出了一种利用滑模变结构算法构建的双环轨迹跟踪控制系统。在基于轮式机器人运动学模型基础上,针对该非线性欠驱动系统采用滑模变结构算法设计了能够保证全局范围内渐近稳定的轨迹跟踪控制器,并构建了双环控制系统。通过内环系统控制角速度,实现对方向角的跟踪;外环控制器得到控制角之后实现对速度的控制,使机器人达到期望位姿状态。文中利用Lyapunov稳定性理论对所设计的闭环系统进行了稳定性分析,并通过仿真进一步验证了该控制系统的有效性。  相似文献   

12.
针对车辆在轨迹跟踪过程中,尤其是高速转向等极限工况下,易出现车辆跟踪精度差和失稳的问题,以分布式驱动智能汽车为研究对象,提出一种考虑横向稳定性的轨迹跟踪协同控制策略。首先,建立车辆纵向、横向以及横摆运动的三自由度动力学模型,设计了基于模型预测控制的主动转向控制器,通过优化求解得到跟踪期望轨迹的最佳前轮转角。然后,采用滑模控制设计横摆力矩控制器,将横摆角速度和质心侧偏角作为联合变量,利用积分二自由度控制模型,计算车辆稳定的等效附加横摆力矩。最后,采用二次规划算法设计最优力矩分配控制器,以满足总的驱动力矩和附加横摆力矩的控制需求。仿真试验结果表明,控制系统在极限高速工况下,能够使车辆精确、稳定的跟踪期望轨迹。  相似文献   

13.
在建立轮式移动机器人运动学和动力学模型的基础上,结合反步设计法,将动力学问题反步为运动学问题,设计了具有全局渐近稳定的轨迹跟踪控制律。该控制律由机器人的两驱动电机的力矩组成,简洁且易于实现。利用Lyapunov函数对控制系统进行了稳定性分析,仿真结果验证了所设计控制器的有效性和精确性。  相似文献   

14.
为确保差速驱动AGV在不确定性干扰以及复杂环境下,能够进行移动、搬运等任务,同时保证运动精度及稳定性,提出了一种时变反步鲁棒自适应轨迹跟踪控制策略,用于解决差速驱动AGV的轨迹跟踪控制问题。首先,对差速驱动AGV进行数学描述,对其运动学和动力学分析建模;其次,根据运动学模型,基于李雅普诺夫稳定性理论,设计时变反步运动控制器作为外环控制器;然后,依据其非线性动力学模型设计鲁棒自适应滑膜控制器作为内环控制器;仿真实验结果表明,制定的控制策略有效,保证了对有界干扰以及模型参数不确定性的鲁棒性,并能快速达到稳定。  相似文献   

15.
四旋翼飞行器轨迹跟踪控制器的设计与验证   总被引:1,自引:0,他引:1       下载免费PDF全文
为了解决四旋翼飞行器在外界扰动影响和系统模型参数存在不确定性情况下的精确轨迹跟踪控制问题,设计并验证了一种四旋翼飞行器的非线性轨迹跟踪控制器。首先建立了考虑执行机构特性的四旋翼飞行器数学模型,并将虚拟控制量映射到了实际中对电机的控制;然后通过在反步法轨迹跟踪控制中加入积分项,设计了一种基于积分型反步法的非线性轨迹跟踪控制器,消除模型参数不确定性及外界干扰引起的误差,仿真结果验证了该方法的可行性;最后,利用QBall2四旋翼飞行实验平台,对所设计的非线性轨迹跟踪控制器进行验证,实际飞行实验结果表明了所设计控制器的有效性,提高了实际飞行过程中外界干扰和不确定性下的四旋翼飞行器轨迹跟踪控制的精度。  相似文献   

16.
为了降低工业机器人运动轨迹跟踪误差,提高机器人运动的稳定性,采用混合算法优化工业机器人运动轨迹,并对跟踪误差进行仿真验证。建立工业机器人三维模型简图,根据D-H方法和三角函数关系式推导出各个关节角位移运动方程式。采用B样条曲线设计工业机器人运动轨迹,引用粒子群算法并进行改进,设计出混合算法并优化B样条曲线,给出了混合算法优化迭代曲线。采用Matlab软件对工业机器人关节角位移跟踪误差进行仿真验证,与优化前角位移跟踪误差结果进行对比。结果显示:优化前,工业机器人各个关节运动角位移跟踪产生的最大误差为0.164 rad,跟踪误差较大,误差整体波动幅度较大;优化后,工业机器人各个关节运动角位移跟踪产生的最大误差为0.085 rad,误差降低了48.2%,跟踪误差较小,误差整体波动幅度较小。采用混合算法优化工业机器人运动轨迹,可以降低工业机器人运动轨迹跟踪误差,从而提高机器人运动的稳定性,能够提高工业机器人对产品的加工精度。  相似文献   

17.
自主水下航行器(AUV)是一种高度耦合的强非线性系统,传统的定位方法采用解耦线性化模型,很难保证控制品质。本文针对未知海流作用下AUV的非线性水平面运动模型,充分利用其运动学和动力学模型的特性,提出了基于自适应反演设计方法的AUV水平面动力定位算法,在线估计海流速度。仿真结果验证了跟踪控制系统的全局渐进稳定性,及对有界外部扰动的鲁棒性。  相似文献   

18.
针对液压伺服驱动机械手运动轨迹跟踪误差较大的问题,引用改进神经网络PID控制器,对控制效果进行了验证.创建了机械手运动机构平面简图,推导出机械手末端执行器运动的几何关系式,阐述了伺服阀控制工作原理,给出了压力和流量控制方程式.采用改进粒子算法优化神经网络PID控制器,给出了机械手液压驱动控制的在线控制流程图.结合具体实例,将初始参数输入到Matlab软件中进行轨迹误差仿真,并与PID控制误差进行比较.误差结果表明:采用改进神经网络PID控制,产生的最大误差为3.3×10~(-2) m,误差波动程度较小;采用PID控制,产生的最大误差为6.7×10~(-2) m,误差波动程度较大,机械手液压伺服驱动采用改进神经网络PID控制,能够提高机械手运动轨迹跟踪精度.  相似文献   

19.
一种并联机器人误差综合补偿方法   总被引:7,自引:0,他引:7  
针对并联机器人轨迹规划和轨迹跟踪过程中,同时存在机构误差引起的期望轨迹与理想轨迹之间的偏差和非线性摩擦、负载变化等扰动因素引起的动态误差,提出一种并联机器人误差综合补偿方法:在轨迹规划过程中,基于并联机器人位姿误差模型将位姿误差补偿转化为驱动杆参数组合优化问题,进而利用粒子群算法寻优驱动杆参数,修正并联机器人期望轨迹;在轨迹跟踪过程中,设计基于自适应迭代学习控制算法的动态误差补偿策略,实现对期望轨迹的有效跟踪。在Stewart平台下基于ADAMS和Matlab进行仿真试验,在轨迹规划和轨迹跟踪过程中,分别修正期望轨迹偏差并补偿轨迹跟踪动态误差,实现并联机器人误差综合补偿。进一步,基于混联机床进行工件加工试验,验证方法对于提高并联机器人工作精度的有效性。  相似文献   

20.
高速开关阀控气动位置伺服系统的自适应鲁棒控制   总被引:3,自引:0,他引:3  
针对高速开关阀控气动位置伺服系统所具有的模型参数不确定性、不确定非线性以及外干扰,为实现气缸的高精度运动轨迹跟踪控制,设计了基于标准投影映射的自适应鲁棒控制器。该控制器通过在线最小二乘参数估计来减小模型中参数不确定性,利用基于反步法设计的非线性鲁棒控制来抑制参数估计误差、不确定非线性以及外干扰的影响,从而保证一定的瞬态性能和高的气缸运动轨迹控制精度。由于运用了标准投影映射以保证在线参数估计有界,控制器的两个部分可以独立进行设计。试验表明,所设计的控制器能获得良好的轨迹跟踪控制性能,对干扰具有较强的性能鲁棒性,系统跟踪幅值为0.09 m,频率为0.5 Hz的正弦期望轨迹时,最大绝对跟踪误差为1.51 mm,标准跟踪误差0.72 mm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号