首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
高活性氧化镁通过水合反应制得氢氧化镁,通过添加不同浓度的MgCl_2,研究水化剂氯化镁浓度、水化温度对氢氧化镁晶体生长的影响。粒度仪、X-射线衍射仪(XRD)和扫描电子显微镜(SEM)的检测表明,氧化镁水合制备氢氧化镁的纯度较高;水化温度70℃,氯化镁浓度低于1.00 mol/L时,产品为片状氢氧化镁;当氯化镁浓度高于1.50 mol/L时,出现条状氢氧化镁;在160℃下高温水热,均能得到片状氢氧化镁;氯化镁浓度为1.00 mol/L时,产品形貌为形状规则的片状晶体。  相似文献   

2.
高活性氧化镁通过水合反应制得氢氧化镁,通过添加不同浓度的MgCl_2,研究水化剂氯化镁浓度、水化温度对氢氧化镁晶体生长的影响。粒度仪、X-射线衍射仪(XRD)和扫描电子显微镜(SEM)的检测表明,氧化镁水合制备氢氧化镁的纯度较高;水化温度70℃,氯化镁浓度低于1.00 mol/L时,产品为片状氢氧化镁;当氯化镁浓度高于1.50 mol/L时,出现条状氢氧化镁;在160℃下高温水热,均能得到片状氢氧化镁;氯化镁浓度为1.00 mol/L时,产品形貌为形状规则的片状晶体。  相似文献   

3.
水合氯化镁焙烧得到的氧化镁的水化研究   总被引:2,自引:0,他引:2  
通过正交试验,考察反应温度、反应时间、氧化镁与反应液的固液比、水化剂对水合氯化镁焙烧得到的氧化镁水化的影响.采用X射线衍射、扫描电子显微镜、氮气吸附来表征产品.实验结果表明,氧化镁水化的最优组合是:反应温度为90℃,反应时间为4h,固液质量体积比为0.1 g/mL,水化剂采用氯化镁.水化剂、反应温度和反应时间对氧化镁水化的影响较大.反应温度升高,氧化镁的水化率增加;反应时间越长,氧化镁的水化率越高.反应温度对比表面积的影响比反应时间的影响大,而且70℃时得到的产品的比表面积最大,90℃时次之,50℃时最小.在常压条件下通过氧化镁水化制备高质量的氢氧化镁是比较困难的.  相似文献   

4.
以水菱镁矿为原料,通过“煅烧-水化-煅烧-水热”的简单合成路线制备了高分散六角片状的阻燃型纳米氢氧化镁。确定初步工艺后,探究了氧化镁用量、水热温度和水热时间对氢氧化镁结晶度和形貌的影响,确定最佳工艺水热条件:氧化镁用量为10%~25%(质量分数)、水热温度为150 ℃、水热时间为3 h。在水热过程中,分别向反应体系中加入聚乙烯吡咯烷酮(PVP)、十六烷基三甲基溴化铵(CTAB)、聚乙二醇6000(PEG6000)和聚乙二醇200(PEG200),考察了不同改性剂及改性剂用量对氢氧化镁颗粒结晶度和分散性的影响。结果表明在4%(质量分数)PVP的条件下,能很好地改善纳米氢氧化镁的分散性,并得到了分散性好、晶形完整、粒径均匀、直径为300~400 nm、厚度为40~60 nm的六角片状纳米氢氧化镁。  相似文献   

5.
以氯化镁和氨水为原料,采用一步法制备氢氧化镁阻燃剂。考察了原料配比、反应温度、反应时间、搅拌转速对氢氧化镁产率、纯度及阻燃率的影响。利用X射线衍射仪(XRD)、傅里叶变换红外光谱仪(FT-IR)、综合热分析仪(TG-DSC)对制得的样品进行表征。通过单因素实验和正交实验得出优化工艺条件:原料配比(氨水与氯化镁物质的量比)为4∶1,反应温度为35℃,反应时间为60 min,搅拌转速为250 r/min。在此条件下氢氧化镁的产率为92.87%、纯度为96.89%、阻燃率为57.83%。  相似文献   

6.
超细氢氧化镁粉体的制备研究   总被引:4,自引:0,他引:4  
以氨水为沉淀剂与氯化镁反应,直接沉淀法制备氢氧化镁,研究反应温度、反应时间、Mg2+的初始浓度、原料配比对产品粒径与形貌的影响,产品使用粒度分析仪、XRD、红外与透射电镜表征,在最佳反应条件(温度35℃,时间30 min,Mg2+浓度1.0 mol/L,摩尔比1∶6)下,制备得到片状,粒径150 nm超细氢氧化镁粉体。  相似文献   

7.
以六水氯化镁和氢氧化钠为原料,采用两步法即氢氧化钠沉淀-水热处理过程制备出湿氢氧化镁固体,再以硅烷偶联剂KH550对氢氧化镁表面进行改性制得氢氧化镁阻燃剂.适宜的工艺条件为:水热温度160℃,水热时间6 h;表面改性温度80℃,硅烷偶联剂最佳用量为氢氧化镁理论量的5.0%.结果表明:改性氢氧化镁结晶度高、晶粒形貌规整、片状、粒径小(平均粒径300 nm左右)且粒度分布窄;硅烷偶联剂在氢氧化镁粉体表面上发生化学吸附,氢氧化镁表面极性降低,因而具有良好的分散性和疏水性.改性氢氧化镁与EVA树脂组成的复合材料有很好的阻燃性能,氧指数达到29.9.  相似文献   

8.
研究了不同镁盐原料对制得的氧化镁晶体形貌的影响。以3种镁盐为原料、氨气为沉淀剂制备了不同形貌的前驱体,通过煅烧热分解法制备氧化镁晶体。采用扫描电镜、X射线衍射、热重(TG)分析和激光粒度分布分析对所得氧化镁产品进行表征,选用柠檬酸法测定氧化镁活性。结果表明,以六水合氯化镁、六水合硝酸镁、硫酸镁为原料制备的氧化镁形貌分别为块状、片状、花球状。通过对不同煅烧条件制备的不同形貌氧化镁活性的研究,得出在升温速率为10 ℃/min条件下升高温度到600 ℃恒温煅烧2 h所得氧化镁活性最高,不同形貌氧化镁在相同煅烧条件下的活性不同:块状>片状>花球状。  相似文献   

9.
为加强微晶菱镁矿的深入研究,分别以微晶菱镁矿经高温煅烧所得微晶MgO和辽宁某工厂轻烧MgO为原料进行蒸氨、沉镁、煅烧得到MgO,并进行水化实验。采用水合法考察了MgO活性对蒸氨动力学的影响,探究了反应温度、固液比对产品粒径及水化率的影响,考察了不同固液比所得产品形貌,并对水化曲线进行分析,确定了不同镁源的水化反应控制类型。结果表明:二者的蒸氨反应都受扩散控制;在100℃、9 h条件下,固液比为1/5时,微晶MgO水化产品呈完整的六方片状结构,而轻烧MgO水化产品的片状结构大小不一且不规整;二者水化反应均属于化学反应控制类型。此研究为微晶菱镁矿的利用发展提供了新思路。  相似文献   

10.
为了利用我国川藏地区的微晶菱镁矿制备高纯氢氧化镁,将20~3 mm的微晶菱镁矿经900℃保温3 h轻烧后磨至≤0.1 mm,再分别经过25℃常温水化、95℃高温水浴水化和高压(1 MPa)蒸汽水化(又分为干蒸和湿蒸两种)除杂而得到高纯氢氧化镁,并对水化产物进行化学组成分析、水化率(经500℃保温2 h煅烧)检测、激光粒度分析、XRD分析及显微形貌观察。结果表明:常温及高温水化的水化率分别为74.5%、82.1%,产物为氢氧化镁及部分未水化的氧化镁,常温水化的产物呈颗粒状,晶粒较小;高温水化的产物呈片状且团聚明显。高压蒸汽水化的产物的水化率≥95.2%,得到的氢氧化镁粒度小,分散性好;干蒸水化的产物呈六方片状及颗粒状,而湿蒸水化的产物较干蒸具有更好的结晶形态,呈六方片状。化学分析结果表明,采用不同水化方式得到的产物,经500℃保温2 h去除灼减后的Mg O含量均在99%(w)左右,说明用该微晶菱镁矿可制备出高纯度的氢氧化镁。  相似文献   

11.
以除硫酸根后的轻烧粉精制液为原料,氨气为沉淀剂,在无表面活性剂条件下制备阻燃剂型氢氧化镁。采用X射线衍射仪(XRD)、扫描电镜(SEM)和激光粒度仪对产品进行表征。实验研究了通氨速率、反应温度对氢氧化镁产品形貌和粒度的影响,在较优的反应温度和通氨速率条件下考察了纯晶种加入量对产品的影响。实验结果表明,在纯晶种加入量为3%(质量分数)、氨气流量为300 mL/min、沉镁温度为90 ℃为制备阻燃剂型氢氧化镁的最佳条件,在此条件下产品的粒径D50=1.2 μm,比表面积(BET)为6.3 m2/g,转化率达到81.2%。  相似文献   

12.
探索了活性氢氧化镁经水热改性制备形貌规则、分散良好的片状氢氧化镁的方法。研究了焙烧-水化对活性氢氧化镁性质的影响及活性氢氧化镁水热改性制备分散性氢氧化镁的工艺规律,并用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、物理吸附仪和激光粒度仪等对水热产物进行了表征。研究结果表明:通过低温焙烧及水化可将团聚态的工业氢氧化镁先转化为活性较高的氢氧化镁,再经温和水热改性即可制得形貌规则、分散性良好的片状氢氧化镁。  相似文献   

13.
High‐quality magnesium hydroxide powders can be produced by hydrating slow‐reacting magnesia in dilute magnesium acetate solutions. The kinetics of this process are very crucial for process design and control, and for the production of a powder with desirable particle morphology. In this work, industrial heavily‐burned magnesia powders were hydrated in 0.01–0.1 mol dm−3 magnesium acetate solutions at temperatures ranging between 333 and 363 K. Examination of the magnesium hydroxide produced and the analysis of the kinetic data suggest that the hydration of heavily burned magnesia in magnesium acetate solutions is a dissolution–precipitation process controlled by the dissolution of magnesia particles. The activation energy was estimated to be 60 kJ mol−1, while the reaction order with respect to acetate concentration was found to be about one. © 1999 Society of Chemical Industry  相似文献   

14.
The kinetics of magnesia hydration to produce magnesium hydroxide is crucial for process design and control, and for the production of an Mg(OH)2 powder with desirable particle morphology. In this study, highly pure magnesia has been hydrated in a batch reactor. The effects of the following variables were evaluated experimentally: temperature (308–363 K), reaction time (0.5–5 h), initial slurry density (1–25%wt) and particle size in the ranges ?212 + 75 µm and ?45 + 38 µm. Experimental data indicate increasing magnesia hydration rates with increasing temperature, as expected. In addition, it has been observed that the hydration of magnesia increases significantly up to about 4–5%wt initial slurry density, stabilising afterwards. On the other hand, the reaction was almost unaffected when magnesia with different particle sizes were hydrated because of similar specific surface areas involved. A reaction mechanism to explain the oxide dissolution and the hydroxide precipitation has been proposed, assuming no significant change in the initial solids size and dissolution rate as the controlling step. The calculated activation energy value of 62.3 kJ mol?1 corroborates the mechanism proposed in this study and compares well with values previously reported in the literature. Copyright © 2004 Society of Chemical Industry  相似文献   

15.
以轻烧粉精制液和氨气为原料,研究了蒸氨精制液中杂质离子对氢氧化镁形貌的影响。选取阳离子NH4+、Ca2+和阴离子SO42-作为研究对象,考察了其对氢氧化镁的形貌和颗粒大小的影响。采用扫描电镜(SEM)、X射线衍射仪(XRD)和激光粒度仪对产品进行表征。结果表明,NH4+、Ca2+对氢氧化镁产品的性能影响较小,而SO42-对氢氧化镁产品的形貌和粒径影响较显著。并利用氯化钡除去溶液中的SO42-,比较未除硫、除硫后与用纯氯化镁制备的产品的差别。  相似文献   

16.
以MgCl2·6H2O和CO(NH2)2为原料,采用均匀沉淀法制备出氢氧化镁沉淀,分别经直接干燥法、置换干燥法和改性干燥法除去沉淀中的湿分,再将干燥的氢氧化镁粉体经马弗炉煅烧得到纳米氧化镁粉体。通过透射电子显微镜、X射线衍射仪和红外光谱仪的表征与分析,研究干燥方法对纳米氧化镁粉体形貌和团聚情况的影响,探讨了干燥过程的防团聚机理。  相似文献   

17.
基于轻烧氧化镁为原料,通过“一锅法”合成了一种具有氢氧化镁(MH)和碱式碳酸镁(MC)双组分多级结构的一体化高效无卤复合阻燃剂(MCMH)。将MCMH和MH分别与聚丙烯(PP)密炼共混,经模压成型制备了PP/MCMH和PP/MH复合材料,并对比研究了MCMH与MH应用于PP的阻燃性能。结果表明,合成的MCMH是氧化镁先水化转变为氢氧化镁,然后部分氢氧化镁与碳酸氢铵反应生成碱式碳酸镁,呈现花状多级结构。当阻燃剂质量分数占复合材料的50%时,PP/MCMH复合材料的热释放速率(HRR)峰值和烟雾产生率(SPR)峰值较PP/MH复合材料大幅降低,分别为299 kW/m2和0.038 m2/s。该方法原料来源广泛,工艺简单易行,具有规模化生产和应用的潜力。  相似文献   

18.
以白云石为原料,通过氨法制备出高纯度(99.30%)圆片状的阻燃型微纳米级氢氧化镁。探究了反应温度、通氨速率、氨镁物质的量比对氢氧化镁分散性和形貌的影响,确定最佳工艺条件:反应温度为80 ℃、通氨速率为150 mL/min、氨镁物质的量比为23∶1。用扫描电镜、透射电子显微镜、X射线衍射仪、激光粒度分析仪、热重分析仪和白度仪表征产品的形貌、结构、粒度及稳定性。结果表明制得的圆片状微纳米级氢氧化镁的分散性好、晶型完整、粒度均匀,D50为2.493 μm、D90为6.132 μm、直径约为5.7 μm、厚度约为0.7 μm、长厚比约为8∶1。稳定性好、灼烧失量为31.03%、白度为97.4,高于工业氢氧化镁行业标准。  相似文献   

19.
特种耐火级氧化镁不但要有高的纯度,也要有很高的活性,但目前中国尚不能生产这样的优质产品。以卤水为原料,经过氢氧化镁途径制备高纯高活性氧化镁,重点考察了卤水浓度、反应时间等因素对中间体氢氧化镁粒径、分散状态、纯度的影响,并通过添加表面活性剂,得到了制备高纯度高分散中间体氢氧化镁的最佳工艺条件为:氯化镁的浓度为1-1.5 mol/L,反应时间为2-2.5 h。该工艺条件下可以得到粒径小、分散性好、纯度达99%以上的氢氧化镁,为高活性氧化镁的制备奠定了基础,具有重要的实际应用意义。  相似文献   

20.
为解决超细氢氧化镁颗粒细、易团聚导致的难过滤问题,本文考察了添加剂种类对含超细氢氧化镁浆料过滤性能的影响,系统研究了阳离子型聚丙烯酰胺加入方式、添加剂用量比、反应温度、反应时间和搅拌速率等因素对过滤速率的影响,采用X射线衍射仪(XRD)、热场发射扫描电子显微镜(SEM)对反应过程中得到的氢氧化镁晶体结构、形貌、粒度等进行表征分析,结合傅里叶红外光谱仪(FTIR)探究了聚丙烯酰胺分子与氢氧化镁晶体的结合机制,总结了阳离子型聚丙烯酰胺提高含超细氢氧化镁浆料过滤性能的机理。结果表明:阳离子聚丙烯酰胺的添加量为理论氢氧化镁质量的0.7%,反应温度60℃,搅拌速率250r/min,超细氢氧化镁浆料的过滤速率最大为545mL/(m2·s),体系黏度最低为8.64mPa·s,氢氧化镁的平均粒径为138nm。过滤性能提高的机理为:阳离子聚丙烯酰胺中的酰胺基团与氢氧化镁分子中的羟基通过吸附架桥方式结合形成长链分子,使氢氧化镁颗粒之间分散性提高,减少相互间的团聚,提高整体过滤速率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号