首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 172 毫秒
1.
采用正火控冷试验研究Q460C钢板的生产工艺,结合力学试验和金相组织研究正火控冷工艺对Q460C钢板组织和性能的影响,结果表明:钢板强度随水冷速度的增加和终冷温度的降低而增加,当冷却速度<3℃/s,对钢板的强度值基本没有影响;当冷却速度>3℃/s,钢板的强度值随冷速升高而提高;正火温度<920℃时,0℃冲击性能随温度的升高而增加,正火温度>920℃时,冲击性能逐渐恶化。  相似文献   

2.
针对热轧Q345E钢板低温冲击不合的问题,采用正火及正火控冷的方法进行钢板性能试验。试验结果表明,冲击不合的Q345E热轧钢板经过常规正火后,冲击性能明显提升,但强度下降明显。经过正火控冷后,较常规正火强度降低明显减少。终冷温度越低,冷却速度越快,强度降低越少。解决了热轧钢板Q345E冲击不合的问题。提高了钢材成材率,降低了企业损失。  相似文献   

3.
研究了Q500q钢动态连续冷却转变规律,提出了采用超快冷+层流冷却工艺试制Q500q,试制工艺为第一阶段即粗轧开轧温度≥1 050℃,粗轧阶段累计压下率≥60%,待温厚度为2.5倍成品厚度;第二阶段即精轧开轧温度830~860℃,终轧温度780~810℃;采用超快冷+层流冷却联动方式进行冷却,终冷温度630~650℃,冷却速率在15℃/s。试验钢的金相显微组织由AF+B构成,晶粒度在13级左右,试验钢的屈服强度为538~560 MPa,抗拉强度为647~668 MPa,延伸率≥21%,-40℃低温冲击韧性≥160 J,Z向断面收缩率≥75%。试验钢板具有非常优异的强韧性配比,采用此工艺生产减少了传统工艺中的热处理的工序,降低了工序生产成本,而且试制的钢板仍然能满足国家相关标准的要求。  相似文献   

4.
为了研究TMCP工艺对Q370q E-HPS高性能桥梁钢组织和性能的影响,达到替代正火工艺的目的,对终轧温度、开冷温度、返红温度及冷却速率等TMCP关键工艺参数与组织、力学性能的关系进行分析。结果表明:采用两阶段控轧控冷工艺生产Q370q E-HPS钢时,随终轧温度升高、开冷温度降低、返红温度升高及冷却速度降低,铁素体晶粒尺寸增大,珠光体含量增加,屈强比降低。通过工艺参数优化,可获得合适尺寸和体积分数的铁素体和珠光体,实现Q370q E-HPS钢良好的强韧性匹配和较低的屈强比。  相似文献   

5.
李鑫磊  杨春卫 《钢铁》2013,48(5):81-86
 采用正火工艺与控制冷却相结合的“正火控冷工艺”,奥氏体化温度与一般正火温度相同,正火后进行水冷,得到更细小的铁素体+珠光体组织。针对120mm E36船板钢的开发进行了试验研究,正火后利用淬火机“弱水冷”模式进行水冷,终冷温度600~650℃。与传统正火后空冷相比,塑性未降低,强度提高约15MPa,低温韧性良好,特别是心部-60℃冲击功大于100J,获得了更为细小均匀的铁素体+珠光体组织,各项性能满足E36船板标准要求,对特厚船板的开发具有重要意义。  相似文献   

6.
依托于超快速冷却技术(UFC)开发出一种钛微合金Q460钢板。研究轧后超快冷至不同温度(560℃、610℃和680℃)后试验钢的组织性能和析出行为,并对其综合强化机理进行了研究。研究结果表明:不同终冷温度条件下,试验钢组织均为多边形铁素体和块状珠光体组织,且随终冷温度降低,晶粒明显细化;经TEM分析统计,TiC数量密度随终冷温度的升高而增大;试验钢的抗拉强度和屈服强度随着终冷温度的升高均先降低后升高,-20℃冲击功随终冷温度的降低逐渐升高;当终冷温度为680℃时,试验钢屈服强度可达510 MPa,固溶强化、细晶强化、位错强化、析出强化对屈服强度的贡献率分别可达42 MPa、188 MPa、62 MPa和217 MPa。说明析出强化和细晶强化为试验钢的两种重要强化方式。  相似文献   

7.
屈服强度450 MPa级新型耐候钢研制   总被引:1,自引:0,他引:1  
郭慧英  张宇  王银柏  许红梅 《钢铁》2014,49(11):68-73
 通过连续冷却相转变行为研究,成功试制了20 mm厚屈服强度450 MPa级耐候钢板,并对钢板的显微组织、力学性能、耐腐蚀性能及焊接性能进行了分析。连续冷却相变行为和钢板试制结果表明:精轧温度约为850 ℃、累计压下率不小于0.6、轧后冷速为15~30 ℃/s、终冷温度不大于579 ℃可以得到以多边形铁素体(晶粒尺寸为3~10 μm)和退化珠光体为主并含有少量马奥岛(M-A组元)的钢板,其屈服强度和抗拉强度分别为458和557 MPa,伸长率不小于 28%,-60 ℃冲击功不小于 287 J,其优异的低温冲击韧性与钢板有效晶粒尺寸较小以及大角度晶界所占比例较高有关。72 h亚硫酸氢钠和氯化钠溶液周期性浸润试验结果显示,试制钢板的耐蚀性能比Q345B分别提高了约49%和40%。对试制钢板进行线能量为30 kJ/cm的埋弧焊焊接试验,得到的焊接接头热影响区熔合线处-40 ℃冲击功为156 J。  相似文献   

8.
孙宪进  杜鹏举  赵乾 《特殊钢》2022,43(5):74-77
通过JMatpro软件、扫描电镜、力学性能测试,对Q500qE 60 mm厚度500 MPa级低屈强比高强钢板进行了连续冷却转变(CCT)曲线、钢板显微组织与力学性能、焊接接头力学性能分析。结果表明,通过控轧控冷工艺:终轧温度800~840℃,入水温度660~680℃和终冷温度400~450℃,该钢组织为铁素体+贝氏体+马氏体/奥氏体岛,两相交界处和贝氏体内部存在大量大角度晶界。钢板1/4和1/2厚度位置屈服强度≥500 MPa,抗拉强度≥640 MPa,屈强比≤0.80,-40℃低温冲击功≥200 J,焊接热影响区-40℃低温冲击功≥100 J  相似文献   

9.
试验分析了开冷温度、冷却速度和终冷温度对X80HD2管线钢组织和性能的影响,结果表明,在不同开冷温度下,均能得到铁素体和贝氏体双相组织,随开冷温度的降低,铁素体含量增多,M/A含量增加,屈服强度下降,Rt0.5/Rm下降,均匀伸长率降低;随冷却速度提高,贝氏体组织细化,屈服强度增加,Rt0.5/Rm升高,均匀伸长率降低;随终冷温度降低,M/A细化,抗拉强度降低,Rt0.5/Rm升高,加工硬化速率升高,均匀伸长率升高。最佳冷却工艺参数:开冷温度690℃,冷却速度15℃/s,终冷温度400℃。  相似文献   

10.
采用分段式冷却模式,研究不同的空冷时间、卷取温度、冷却速度对高扩孔钢显微组织和力学性能的影响。结果表明:随着空冷时间的延长,试验钢铁素体体积分数逐渐增加,钢的强度逐渐下降,伸长率及扩孔率逐渐提高;冷速在150℃/s时,马氏体组织转变导致钢板扩孔性能明显下降;当卷取温度为450℃、中间空冷时间为6~9 s、冷却速度为50℃/s时,可获得扩孔性能优良的600 MPa级高扩孔钢。  相似文献   

11.
徐壮  徐倩  信海喜 《天津冶金》2012,(4):21-23,61
为提升天钢中厚板生产能力,优化产品结构,研制开发了Q370qE高等级桥梁用结构钢板.系统阐述了Q370qE桥梁用结构钢板在天钢中厚板生产线的试制过程,通过合理地确定微合金化成分体系、冶炼和连铸工艺、控轧控冷工艺,成功轧制出了综合力学性能优良的Q370qE桥梁用结构钢板,成品钢板的力学性能和金相组织表明其性能均匀稳定,完全满足国标GB/T714-2008的要求,且低温冲击韧性优异.这表明Q370qE桥梁用结构钢板的研制开发工艺路线设定合理可行,可依照此工艺路线进行规模生产.  相似文献   

12.
姜颖  徐华  黄微涛  向浪涛 《特殊钢》2021,42(2):35-37
为满足桥梁结构用Q420qE钢板抗拉强度Rm≥540 MPa、-40℃V型冲击功≥120 J的要求,通过采用0.05~0.11C,Nb-Ti微合金化成分设计以及深脱硫模式、LF+RH精炼和电磁搅拌等工艺,确保300 mm×2010 mm铸坯质量良好。利用TMCP(thermomechanical control process)轧制工艺,轧后堆垛缓冷,研发Q420qE钢18~26 mm板的屈服强度446~580 MPa,抗拉强度577~727 MPa,伸长率19.0%~28.5%,-40℃冲击吸收功129~287 J,各项性能指标均符合国标要求。  相似文献   

13.
介绍了-40℃纵向V型冲击功不小于100J的Q370qE桥梁结构用钢板在安钢100t转炉2800mm中板生产线的试制过程,通过合理确定低成本运行的成分体系和冶炼、连铸、轧制工艺,确保了Q370qE钢板显微组织、力学性能、工艺性能满足用户要求,实现了低成本Q370qE的批量生产。  相似文献   

14.
阐述了-40℃纵向V型冲击功不小于100J的Q370qE桥梁结构用钢板在安钢100t转炉/电炉—2800mm中板生产线的试制过程,通过合理的确定微合金化成分体系、冶炼和连铸工艺、轧制工艺,确保了Q370qE钢板显微组织、力学性能满足用户要求,实现了批量生产。  相似文献   

15.
试验高强度低合金钢Q420N(/%:0.16C,0.28Si,1.39Mn,0.015P,0.003S,0.11Cr,0.009N)的生产流程为120 t转炉-LF精炼-RH真空脱气-连铸300 mm×340 mm方坯-热连轧成Φ90 mm棒材.试验研究了普通轧制工艺(开轧1100~1150℃,终轧950~1000℃,...  相似文献   

16.
为了获得桥梁用不锈钢复合板良好的综合性能,采用控轧控冷(thermal mechanical control process,简称TMCP)工艺轧制了桥梁用不锈钢复合板316L+Q370qD,利用金相、扫描、拉伸、冲击、弯曲、剪切和晶间腐蚀等手段研究了该复合板的组织与性能。结果表明,316L+Q370qD桥梁用不锈钢复合板的界面实现了完全冶金结合,未发现孔洞、裂纹等缺陷以及大颗粒的析出物及氧化物夹杂等;复合板的屈服强度为421~446MPa,伸长率为24.0%~28.0%,-20℃纵向冲击吸收能量平均值为200J,180°内、外弯曲合格,平均剪切强度为412 MPa,复合板的各项力学性能均满足GB/T 8165—2008《不锈钢复合钢板和钢带》标准要求。按照GB/T 4334—2008方法 E进行晶间腐蚀试验,复层不锈钢316L未出现晶间腐蚀现象,具有良好的耐晶间腐蚀性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号