首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 390 毫秒
1.
以实验室筛选的枯草芽孢杆菌产纤维素酶菌株BS-05为出发菌株,对其产纤维素酶条件进行了研究。实验结果表明,菌株BS-05产纤维素酶的最佳条件是:以2%的CMC-Na为碳源,2%的蛋白胨和2%的酵母粉为氮源,产酶培养基初始pH为7,装液量为60mL/250mL,接种量5%,在37℃,150r/min下培养48h。在此条件下,该菌株产酶能力最强,羧甲基纤维素酶活力CMCA达195.46U/mL,滤纸酶活力FPA达174.52U/mL。  相似文献   

2.
纤维素酶高产菌的筛选和鉴定   总被引:1,自引:0,他引:1  
从兰州榆中县兴隆山国家自然保护区采集土样,先用羧甲基纤维素钠刚果红培养基筛选出79株Hc值较大的产纤维素酶菌株,再经液体发酵复筛测CMC酶活和滤纸酶活.结果表明,经复筛后菌株No-15A的纤维素酶活力最高,羧甲基纤维素酶活1 376.20 U/mL,滤纸酶活497.78 U/mL,其粗酶液分解滤纸快速明显,且该菌株生长速度最快,每日菌落直径增长量为4~5 cm.经形态学初步鉴定菌株No-15A属青霉.  相似文献   

3.
报道了淀粉液化芽孢杆菌(Bacillusamyloliquefacien)BS5582菌株产β-葡聚糖酶和蛋白酶的液体发酵条件优化和酶学特性的研究结果。摇瓶水平下产β-葡聚糖酶的最佳培养基(g/L)为大麦粉40,玉米粉30,豆饼粉30,Na2HPO4·12H2O6,(NH4)2SO44,MgSO·47H2O1,CaCl20.8;产酶最佳起始pH7.0,装液量25mL/250mL。种子于37℃培养10h后,接种量8%,在37℃下发酵51.75h后β-葡聚糖酶酶活最高达到182.52U/mL,蛋白酶酶活达8062U/mL。β-葡聚糖酶的最佳反应pH6.5,最佳反应温度50℃。10mmol/L的Ca2 、Na 、NH4 、K 、Mg2 对β-葡聚糖酶活性有一定的激活作用;而相同浓度的Cu2 、Fe2 则表现出较强的抑制作用。  相似文献   

4.
利用3,5-二硝基水杨酸(DNS)法测定酶活,优选黑曲霉(Aspergillus niger)HS-5发酵产β-葡聚糖酶的发酵条件。在单因素试验的基础上,采用中心组合试验原理设计响应面法优化工艺条件,得到最佳发酵条件为接种量3.11%,初始p H值为6.09,发酵时间60.02 h。在此最佳条件下,测得β-葡聚糖酶的酶活力为20.03 U/m L,比初始酶活力12.98 U/m L提高了154%。  相似文献   

5.
以康宁木霉为出发菌株,利用N+注入技术进行诱变选育,采用响应面法对诱变菌株HF-6产纤维素酶的发酵条件进行优化。结果显示:菌体的存活率随注入剂量的增加呈“马鞍型”曲线,注入剂量在(10~12.5)×1014ions/cm2区域内有高的正突变率。在注入能量为15keV、注入剂量为12.5×1014ions/cm2条件下,筛选得到1株遗传稳定性良好的高产菌株HF-6,其产纤维素酶活力稳定在0.217U/mL左右,较出发菌株提高52.82%;用Plackett-Burman设计法筛选出影响产纤维素酶的3个重要因素:pH值、装液量及硫酸铵质量浓度,通过响应面分析Box-Behnken设计法对筛选出的因素进行优化评价,得到滤纸酶活与3个因素的最优回归方程。通过验证实验,确定滤纸酶活最大时的最佳组合:pH5.75、硫酸铵质量浓度4.23g/L、装液量63mL/250mL,此时酶活可达0.233U/mL。  相似文献   

6.
麦芽的皮层和胚乳糊粉层中都残存有内源酶无法完全降解的β-葡聚糖,进而影响浸出率和麦汁粘度、过滤难度和啤酒胶体稳定性。在啤酒生产中,添加外源β-葡聚糖酶可以有效解决这些问题。采用刚果红营养平板法(GCN平板法)从衡水老白干和老龙口酒曲中筛选了3株β-葡聚糖酶活力较高且生产周期短的菌株(分别标记为4#、8#、12#),通过液态发酵,测得酶活分别为0.362U/mL、0.542U/mL、0.511U/mL。并对发酵培养基进行了优化,得到8#初始菌株最佳酶活为0.556U/mL。对该菌株进行紫外诱变,得到突变株酶活为:0.879U/mL。  相似文献   

7.
利用羧甲基纤维钠(CMCNa)平板筛选法,从白酒发酵副产物黄水中分离得到12株产纤维素酶菌株,其中菌株M34和菌株N2的比酶活最大,被选为后续研究对象。根据细菌形态特征观察,生理生化特性分析并结合16SrRNA序列分析,鉴定菌株M34和菌株N2分别为环状芽孢杆菌(Bacilluscirculans)和内生芽孢杆菌(Bacillusendophyticus)。菌株经液态发酵培养,运用DNS法测定纤维素酶系酶活力,结果表明菌株N2的各酶活均高于菌株M34,其羧甲基纤维素酶活为0. 132U/mL,微晶纤维素酶活为0. 012U/mL,滤纸酶活为0. 041U/mL,β-葡萄糖苷酶活为0. 158U/mL。  相似文献   

8.
以产纤维素酶枯草芽孢杆菌HAS-8为出发菌株,利用氦—氖激光进行诱变育种。通过透明圈筛选和酶活力测定,筛选得到1株细菌HAS-8D,其纤维素酶活力提高68.2%。遗传稳定性试验证明它具有良好的遗传稳定性。经过正交试验优化,最终得到菌株HAS-8D的最佳发酵条件为麸皮2.0%、玉米粉1.0%,培养时间24h,起始pH为7.0,发酵后活菌数达到1.1×109CFU/mL,酶活力为684.35 U/mL。  相似文献   

9.
以一株产纤维素酶的黑曲霉菌株D2为出发菌,进行了微波-亚硝基胍复合诱变,筛选到遗传性状稳定的高产纤维素酶突变菌株N14,其最适生长pH值为5.0~6.0、最适生长温度28℃~30℃,酶解反应的最适pH值为5.0、最适温度50℃.通过单因素和正交试验确定了突变株N14的最佳液态产酶条件是:麸皮为碳源、酵母膏为氮源、碳氮比4:1、起始pH值为6.5,接种量6%,发酵温度30℃,发酵时间3 d.在上述条件下,菌株滤纸(FPA)酶活最高,达363.5 U/mL,是出发菌株的3.5倍.  相似文献   

10.
以稻草粉为主要原料,对白腐菌(White-rot fungi)NS75和黑曲霉(Aspergillus niger)NS83进行固态混合发酵产纤维素酶进行研究。混合菌固态发酵与单菌固态发酵实验结果比较表明,混合菌发酵产生的纤维素酶总体酶活明显高于单菌种发酵,其β-葡萄糖苷酶(β-G)酶活较白腐菌NS75单菌发酵提高了120.9%;葡聚糖内切酶(CMC)酶活比黑曲霉NS83单菌发酵提高了140.8%。单因素实验和正交实验结果表明,当稻草粉麸皮质量比为9∶1,料水比为1∶2,白腐菌NS75与黑曲霉NS83的接种比例为1∶1(v∶v)时,培养第3d开始搅拌,每天搅拌一次,于30℃,培养5d,稻草粉基混合菌发酵产纤维素酶中CMC酶活达到16650U/g,β-G酶活为16108U/g、滤纸酶活(FPA)酶活为3164U/g。  相似文献   

11.
从赊店老酒酒醅中采用透明圈法筛选产纤维素酶的菌株,经过酶活力测定筛选出产纤维素酶能力最强的菌株,对其进行了形态学观察、生理生化试验和分子生物学鉴定,并通过单因素和响应面试验考察了不同条件对该菌株产纤维素酶能力的影响。结果表明,筛选得到产纤维素酶能力最强的菌株4-2,并被鉴定为特基拉芽孢杆菌(Bacillus tequilensis)。在液体发酵培养基中,该菌株最优产纤维素酶的条件为淀粉添加量3.5%,酵母粉添加量0.6%,初始pH 5.8,培养时间5 d,培养温度34 ℃。此优化条件下,该菌株产纤维素酶活力达3 101.83 U/mL,是优化前的20.69倍。  相似文献   

12.
通过初筛(刚果红纤维素水解试验和滤纸条分解试验)和复筛(利用3,5-二硝基水杨酸法测定内切纤维素酶活,滤纸酶活和β-葡萄糖苷酶活),从大围山原始森林土壤中筛选高产纤维素酶菌株,获得4株具有高产纤维素酶活性的菌株。其中一株真菌16-7分解纤维素能力最强且酶活稳定,其内切羧甲基纤维素酶活为265.76U/mL,滤纸酶活为86.44 U/mL,β-葡萄糖苷酶活为39.16 U/mL;对真菌16-7分别进行形态学观察、分子生物学鉴定,初步确认为小刺青霉(Penicilliumspinulosum)。  相似文献   

13.
纤维素降解芽孢菌的筛选及产酶条件优化   总被引:1,自引:0,他引:1  
为筛选高效的纤维素降解芽孢菌,利用刚果红平板染色法初筛,纤维素酶活性(以滤纸酶活表示)为评价指标进行复筛,从腐木中分离筛选出2株高产纤维素酶菌株K1、K2;结合形态学观察、生理生化特征和16S rDNA基因序列同源性分析,分别鉴定为贝莱斯芽孢杆菌(Bacillus velezensis)、枯草芽孢杆菌(Bacillus subtilis)。对培养条件进行单因素优化和正交试验优化,初步确定菌株K1最佳产酶条件为培养时间3 d,培养温度34 ℃、初始pH值7.0、接种量5%、装液量40%,在此优化条件下滤纸酶活为98.4 U/mL,是优化前的2.1倍。菌株K2最佳产酶条件为培养时间2 d,培养温度34 ℃、初始pH值7.0、接种量6%、装液量为30%,在此优化条件下,滤纸酶活为86.7 U/mL,是优化前的1.8倍。  相似文献   

14.
为得到高产纤维素酶的菌株,改善菌种产纤维素酶的能力,该研究以贝莱斯芽孢杆菌(Bacillus velezensis)为原始菌株,以纤维素酶酶活为考察指标,通过单因素和正交试验优化复合诱变条件。结果表明,最优复合诱变条件为紫外(UV)处理150 s、0.25 mol/L亚硝酸钠(NaNO2)在诱变温度23 ℃下诱变处理23 min。在此优化复合诱变条件下,突变株UN-5纤维素酶酶活为101.48 U/mL,比原始菌株的酶活提高了205.8%。经10代传代,纤维素酶酶活仍有100.5 U/mL,说明该突变株产纤维素酶能力强且遗传性状稳定。  相似文献   

15.
从西藏阿里地区冈仁波齐山脉附近筛选得到了一株产纤维素酶的细菌G1,经形态观察与16S rDNA的序列分析鉴定其为地衣芽孢杆菌(Bacillus licheniformis)。该菌株在30 ℃、pH 7的初始条件下培养76 h后产酶量达到最高,酶活力为0.3 U/mL。酶学性质研究表明,B. licheniformis G1所产纤维素酶的分子质量约为65 ku,其最适反应温度为55 ℃,在30~60 ℃范围内保持50%以上的活力;其最适反应pH为6.0,在pH 5.0~6.0范围内保持95%左右的酶活力;此外,Mn2+对其纤维素酶活力有明显的促进作用,而Cu2+、Mg2+、乙二胺四乙酸(EDTA)对该酶活有较强的抑制作用。  相似文献   

16.
里氏木霉的纤维素酶产生条件研究   总被引:11,自引:0,他引:11  
从 7株里氏木霉中筛选出 1株纤维素酶高产菌Tr G。通过对培养基中含水量 ,C∶N ,初始 pH值 ,葡萄糖、尿素、KH2 PO4 的添加 ,培养时间 ,培养温度以及酶解条件进行优化 ,获得纤维素酶生产菌株Tr G的最佳产酶条件为 :稻草粉 35g ,麦麸 15g ,KH2 PO4 0 2 5g ,MgSO4 ·7H2 O 0 0 2 5g ,(NH4 ) 2 SO4 1g ,豆饼粉水解液 7mL ,葡萄糖 0 .5% ,蒸馏水 2 3倍 ,初始 pH值 5 0 ,最适酶解温度为 6 0°C ,于 2 8°C培养 6d ,最大滤纸酶活达 30 8mgG/ g·h ;尿素对酶活有明显的抑制作用。  相似文献   

17.
以椰糠作为碳源,从红树林土壤中分离了一株高产纤维素酶的真菌,命名为DZ10。经形态、生理生化和分子生物学试验,鉴定菌株DZ10为长枝木霉菌(Trichoderma longibrachiatum)。该菌在pH值为6.5、培养温度为35 ℃、初始NaCl含量为2.0%、添加K+终浓度为0.1 mmol/L条件下,椰糠降解率最高为39.88%;在pH值为6.5、培养温度40 ℃、初始NaCl含量3.0%、添加K+终浓度为0.1 mmol/L条件下,羧甲基纤维素酶活力(CMCA)最高值为80.07 U/mL;在pH值为6.0、培养温度35 ℃、初始NaCl含量1.5%、添加K+终浓度为0.1 mmol/L条件下,滤纸酶活力(FPA)最高值为73.81 U/mL。Ca2+、K+对菌株DZ10产酶和椰糠降解率有促进作用,Mg2+抑制菌株DZ10产酶和椰糠降解率。  相似文献   

18.
为提高纤维素酶产生菌YZB46的产酶能力,在单因素试验基础上,通过正交试验筛选最佳发酵培养基组成和最佳发酵条件。结果表明,菌株YZB46的最佳发酵培养基碳源为1.5%麸皮,氮源为0.6%黄豆粉,无机盐为0.1%MgSO4和0.4%KH2PO4;最佳发酵条件为接种量8%,发酵液初始pH 5.0,发酵温度30 ℃,发酵时间72 h,在此优化的发酵条件下,菌株YZB46的产酶活力达37.75 U/mL,是优化前的2.21倍。  相似文献   

19.
纤维素酶高产菌筛选鉴定及酶学性质初步研究   总被引:2,自引:0,他引:2  
该研究从土壤中筛选出一株纤维素酶高产菌株SP08,并通过菌落形态特征和ITS测序技术对菌株进行鉴定,最后通过酶促反应初步测定了该菌所产纤维素酶的性质。结果表明,筛选得到菌株SP08,经鉴定为康氏木霉(Trichoderma koningii),该菌株具有较高的纤维素酶产酶能力,培养60 h时纤维素酶活性即达(18.54±0.75),72 h时酶活达到最高(19.18±0.68)U/mL。酶学研究表明,菌株SP08所产纤维素酶最适温度和pH分别为50 ℃和5.5,在20~50 ℃及pH4.0~6.0时稳定性较高;Mg2+、Mn2+和Ca2+能够提高该酶活性,而Fe2+和Cu2+却对该酶具有抑制作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号