首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
功能梯度Al2O3涂层残余热应力分析   总被引:4,自引:1,他引:3  
Al2O3/316L功能梯度材料是一种聚变反应堆第一壁的候选材料。为避免制备过程中因材料之间热物理性能差别产生的热应力过大造成材料的失效,须对梯度材料进行合理的热应力缓和设计。运用有限元软件,分析成分分布指数、梯度涂层厚度和梯度层数目等参数对Al2O3/316L功能梯度材料残余热应力的影响。分析结果表明:体积分布指数p=1.0时所受热应力最小,涂层承受压应力作用;梯度层数为9时热应力缓和效果最好;梯度层厚度不宜过大;将非功能梯度材料与优化后的功能梯度材料的残余热应力进行比,结果显示:功能梯度材料缓和热应力效果十分显著。最后利用等离子喷涂方法制备了梯度涂层测试涂层残余应力,并与有限元结果进行对比,以验证模拟的准确性。  相似文献   

2.
SiC/Al梯度功能材料各梯度层由不同体积浓度的陶瓷和金属组成,由于材料组分梯度变化,克服了双材料界面的应力突变问题,从而获得优异的使用性能。文中应用Ansys软件和激光云纹干涉法,对具有四个梯度层的SiC/Al梯度功能材料紧凑拉伸试件在三种工况下的力学行为进行研究。通过Ansys分析得出试件裂纹扩展的规律以及裂前4mm处的应变分布,后续实验采集试件随各载荷变化的位移场云纹图,根据位移与条纹级数的关系以及小变形条件下应变与条纹级数关系式,得到梯度功能材料紧凑拉伸试件预制裂纹区的应变分布。通过两种方法相应结果对比分析,得出有关梯度功能材料的裂纹扩展准则的适用性方面的结论;同时,就实验获得的应变测量结果,讨论梯度功能材料的物性变化规律,以及材料组分和梯度层结构对材料整体物性参数的影响。  相似文献   

3.
The functionally graded material (FGM) is the new concept for a heat resisting material. FGM consists of ceramics on one side and metal on the other. A composition and microstructure of an intermediate layer change continuously from ceramics to metal at the micron level. This study is carried out to analyze the thermal shock characteristics of functionally graded PSZ/metal composites. Heat-resistant property was evaluated by gas burner heating test using C2H2/O2 combustion flame. The ceramic surface was heated with burner flame and the bottom surface cooled with water flow. Also, the composition profile and the thickness of the graded layer were varied to study the thermomechanical response. Furthermore, this study carried out the thermal stress analysis to investigate the thermal characteristics by the finite element method. Acoustic emission (AE) monitoring was performed to detect the microfracture process in a thermal shock test.  相似文献   

4.
An analytical solution for a sandwich circular FGM plate coupled with piezoelectric layers under one-dimensional heat conduction is presented. All materials of the device may be of any functional gradients in the direction of thickness. The solution exactly satisfies all the equilibrium conditions and continuity conditions for the stress, displacement and electric displacement as well as electric potential on the interfaces between adjacency layers. A nonlinear static problem is solved first to determine the initial stress state and pre-vibration deformations of the FG plate that is subjected to in-plane forces and applied actuator voltage in thermal environment in the case of simply supported boundary conditions. By adding an incremental dynamic state to the pre-vibration state, the differential equations that govern the nonlinear vibration behavior of pre-stressed piezoelectric coupled FGM plates are derived. The role of thermal environment as well as control effects on nonlinear static deflections and natural frequencies imposed by the piezoelectric actuators using high input voltages are investigated. Numerical examples are provided and simulation results are discussed. Numerical results for FGM plates with a mixture of metal and ceramic are presented in dimensionless forms. The good agreement between the results of this paper and those of the finite element (FE) analyses validated the presented approach. In a parametric study the emphasis is placed on investigating the effect of varying the applied actuator voltage and thermal environment as well as gradient index of FG plate on the dynamics and control characteristics of the structure.  相似文献   

5.
一种功能梯度材料活塞的材料梯度方程选择   总被引:1,自引:0,他引:1  
应用复合材料热性能理论,采用有限元分析软件AD INA分析具有不同参数的材料梯度方程的陶瓷纤维梯度增强活塞的温度分布和应力分布。结果表明:陶瓷纤维梯度层可以明显改变活塞温度分布,缓和由于热膨胀系数不匹配,在陶瓷纤维增强层与活塞本体交界处产生的应力。并根据计算结果选出最优的材料梯度方程。  相似文献   

6.
The free vibration characteristics of laminated composite and sandwich plates with embedded and/or surface-bonded piezoelectric layers is studied, where a hybrid plate theory is proposed for modelling the structural system. It involves a problem of coupled electro-mechanical field. The variation of mechanical/structural displacements across the thickness are modelled by an efficient plate theory, which ensures inter-laminar shear stress continuity as well as stress free condition at the plate top and bottom surfaces. At the same time, this plate model has the distinct advantage of involving unknowns at the reference plane (plate mid-plane) only. For the electrical potential, the through thickness variation is modelled by the layer-wise theory, where the unknowns are taken at all the interfaces including top and bottom surfaces of the plate. However, the degrees of freedom for the electric potential are finally eliminated from the element matrices through condensation. In order to have generality in analysis, the finite element technique is used to approximate the in-plane variation of displacement parameters at the reference plane and electric potential at the different interfaces. For this purpose, an attempt has been made to develop a simple and efficient rectangular element, which satisfies C1 continuity of transverse displacement at the inter-element boundaries. To validate the proposed model, some numerical examples are solved and the results obtained are compared to the published results. As the number of such published results is not sufficient, new examples covering various features are solved to study different aspects of the proposed model.  相似文献   

7.
梯度功能材料是一种应用广泛的新型复合材料,其制成的齿轮有着独特的性能。为研究梯度功能材料对齿轮的润滑性能的影响,用多重网格法对非对称聚合物齿轮进行瞬态弹流润滑分析,比较均质复合材料齿轮与梯度功能材料齿轮的润滑性能,分析梯度功能材料齿轮分别作为主动轮与从动轮时的齿轮润滑规律,研究梯度功能材料的热性能对齿轮润滑的影响。结果表明:梯度功能材料能够减小齿轮润滑压力,增大润滑膜厚,从而有效改善齿轮润滑;梯度功能材料齿轮作为从动轮时对齿轮润滑较为有利。热弹流润滑分析表明,梯度功能材料齿轮作为从动轮时齿轮啮入的润滑温度较低,其作为主动轮则相对有利于其后的热弹流润滑。  相似文献   

8.
用有限元数值模拟法研究了由弹性材料构成的三元复合管道的力学性能。利用ANSYS软件的结构应力分析程序,模拟了复合管道界面处的一些特点,分析了组元材料参数对三元复合管道力学性能的影响。结果表明:合理调整中间层陶瓷材料的弹性模量和泊松比,可以降低层间材料的界面应力,从而提高三元复合管道的使用寿命和安全可靠性。  相似文献   

9.
Composite flywheels are effective energy storage devices. The multi-rimmed flywheel configuration is first chosen for this study because of its superior operating characteristics and versatility. Then the Kevlar-49/epoxy system is adopted as the basic composite material, which is sandwiched between thin layers of rubber. A general stress analysis procedure is developed for the multi-rimmed structure and a computer routine is established to investigate the effects of various material and geometric parameters on the internal stress levels. A maximum stress criterion is used for failure of the composite flywheel. The basic goal of optimization is to achieve a stress distribution such that each ring in the multi-ringed structure will fail at approximately the same angular speed. The parameters varied in the optimization process include the thickness, Poisson's ratio, Young's modulus and density of the inter-ring material, the density and thickness of the composite material, and the thickness of the flywheel in the axial direction. The optimization process demonstrated that this procedure can be applied in general when other failure criteria or performance characteristics (such as maximum kinetic energy, kinetic energy per weight and kinetic energy per volume) are preferred.  相似文献   

10.
In this paper, thermal buckling analysis is performed on hybrid functionally graded plates (FGPs) with an arbitrary initial stress. The governing equations are derived using the average stress method, including the effect of transverse shear deformation. Then, an eigenvalue problem is formed to evaluate thermal buckling temperatures for simple supported initially stressed ceramic-FGM-metal plates. The effects of functionally graded material (FGM) layer thickness, volume fraction index, layer thickness ratio, thickness ratio, aspect ratio and initial stress on the thermal buckling temperature of hybrid FGPs are investigated. The results reveal that the volume fraction index, initial stresses and FGM layer thickness have significant influence on the thermal buckling of hybrid FGPs.  相似文献   

11.
Thermal postbuckling analysis is presented for a simply supported, shear deformable functionally graded plate under thermal loading. Two cases of temperature field, i.e. in-plane non-uniform parabolic temperature distribution and heat conduction are considered. The material properties of functionally graded materials (FGMs) are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents, and the material properties of FGM layers are assumed to be temperature-dependent. The governing equations are based on a higher-order shear deformation plate theory that includes thermal effects. The initial geometric imperfection of the plate is taken into account. A two-step perturbation technique is employed to determine buckling temperature and postbuckling equilibrium paths. The numerical illustrations concern the thermal postbuckling behavior of perfect and imperfect, geometrically mid-plane symmetric FGM plates under different sets of loading conditions. The results reveal that the temperature dependency has a significant effect on the thermal postbuckling behavior of FGM plates. The results also confirm that for the case of heat conduction, the postbuckling path for geometrically perfect plates is no longer of the bifurcation type.  相似文献   

12.
The dynamic propagation of an interface crack between two functionally graded material (FGM) layers under anti-plane shear is analyzed using the integral transform method. The properties of the FGM layers vary continuously along their thicknesses. The properties of the two FGM layers vary and the two layers are connected weak-discontinuously. A constant velocity Yoffe-type moving crack is considered. The Fourier transform is used to reduce the problem to a dual integral equation, which is then expressed to a Fredholm integral equation of the second kind. Numerical values on the dynamic energy release rate (DERR) are presented for the FGM to show the effect of the gradient of material properties, crack moving velocity, and thickness of FGM layers. The following are helpful to increase resistance to interface crack propagation in FGMs: a) increasing the gradient of material properties, b) an increase of shear modulus and density from the interface to the upper and lower free surface, and c) increasing the thickness of the FGM layer. The DERR increases or decreases with increase of the crack moving velocity.  相似文献   

13.
Based on classical plate theory (CLPT), free vibration analysis of a circular plate composed of functionally graded material (FGM) with its upper and lower surfaces bounded by two piezoelectric layers was performed. Assuming that the material properties vary in a power law manner within the thickness of the plate the governing differential equations are derived. The distribution of electric potential along the thickness direction in piezoelectric layers is considered to vary quadratically such that the Maxwell static electricity equation is satisfied. Then these equations are solved analytically for two different boundary conditions, namely clamped and simply supported edges. The validity of our analytical solution was checked by comparing the obtained resonant frequencies with those of an isotropic host plate. Furthermore, for both FGM plate and FGM plate with piezoelectric layers, natural frequencies were obtained by finite element method. Very good agreement was observed between the results of finite element method and the method presented in this paper. Then for the two aforementioned types of boundary conditions, the values of power index were changed and its effect on the resonant frequencies was studied. Also, the effect of piezoelectric thickness layers on the natural frequencies of FGM piezoelectric plate was investigated. This paper was recommended for publication in revised form by Associate Editor Seockhyun Kim Saeed Jafari Mehrabadi received his B.S. in mechanical Engineering from Azad University, Arak, Iran, in 1992. He then received his M.S. from Azad University, Tehran, Iran in 1995. Now he is a faculty member of the department of mechanical engineering in Azad university of Arak, Iran and PhD student of Azad University, Science and Research Campus, Pounak, Tehran, Iran. His interests include computational methods and solid mechanics such as vibration, buckling.  相似文献   

14.
Seung Wook Lee  Yong Hoon Jang   《Wear》2009,267(9-10):1715-1722
Frictionally excited thermoelastic instability (TEI) is investigated in the system of a layer of finite thickness which is composed of functionally graded material (FGM), sliding against two homogeneous frictional materials of half-planes at speed V. Results show that ceramic-based FGM, which is composed of ceramic at the sliding interface and steel at the middle of the layer, reduces the susceptibility towards TEI. The effect of nonhomogeneous parameters of FGM on critical speed is investigated for the several combinations of FGM such as steel- or ceramic-based FGM with positive and negative nonhomogeneous parameters, respectively. The material sensitivity to the critical speed for the nonhomogeneous parameter of FGM shows that the nonhomogeneous parameters of the thermal expansion coefficient are strong influential factors in ceramic- or steel-based FGM. The transient evolution of temperature perturbation is also obtained to determine the susceptibility towards hot spotting, showing that the ceramic-based FGM with negative nonhomogeneous parameters has the lowest temperature perturbation amplitude during engagement.  相似文献   

15.
The high interest in ceramic matrix composites during the last decade has led to a considerable number of studies devoted to their thermomechanical properties and damage processes. Despite their sensitivity to oxygen partial pressure, carbon fibres appear to possess higher stability and better mechanical properties if they are treated under protective atmospheres than other ceramic fibres (especially classical silicon carbide fibres). The aim of this investigation is to characterize at the nanoscale the main microstructural parameters of Cf–SiC composites provided by the SEP (Division of SNECMA, Bordeaux, France). This material was fabricated from a 2.5D preform made of high strength polyacrylonitrile (PAN)-based carbon fibres densified according to the chemical vapour infiltration process. A pyrocarbon (PyC) interphase was deposited on the fibre prior to the β-SiC matrix infiltration. A careful high resolution electron microscopy (HREM) microstructural investigation focused on the fibre microstructure as well as on the different interfaces in the material: pyrocarbon/fibre and matrix/pyrocarbon interfaces. All these observations have been realized in longitudinal and transverse sections of the specimen. These observations are found in good agreement with Guigon's model for high strength ex-PAN carbon fibres. The PyC interphase texture was strongly anisotropic at the fibre/interphase and interphase/matrix interfaces over a mean thickness of 8–15 nm. Tensile creep tests were performed under partial pressure of argon between 1273 and 1673 K for stress levels ranging from 110 to 220 MPa. Scanning electron microscopy and high resolution electron microscopy were used to study the microstructural modifications inside the fibres and at the different interfaces. A discussion of the possible creep mechanisms based on the microstructural investigation and the creep results is presented.  相似文献   

16.
Using molecular dynamics simulations, the deformation behavior of two types of nanocomposite metallic materials (nano-layered thin films and composite nanowires) is investigated and compared with that of the bulk materials. The first structure is a hybrid nano-layered metallic composite formed by alternating layers of Cu, Ni, Cu, and Nb layers. The nanocomposite has a pre-existing dislocation structure inside it, generated by initially loading a perfect structure to a high strain to nucleate dislocations, then completely unloading it, and loading it again. Four different structures are considered all having the same Cu and Ni layers thickness and varying Nb thickness. Comparison of the deformation behavior between the different structures revealed that the addition of Nb layer makes the material stronger. However, this behavior has a critical limit below which the strength of the material decreases. This is attributed to the extended shearing of the interface that results from the accumulation of dislocations in the Cu/Nb interface. The second structure discussed is a composite nanowire made of a Ni layer sandwiched between two Cu layers. We show that the natural development of coherency stresses at the interfaces between the two layers increases the ability of the wire to deform by a twinning process under tensile loading. This process results in the reorientation of the composite nanowire that, under unloading, forces the nanowire to completely recover the straining, leading to a pronounced pseudoelastic behavior.  相似文献   

17.
多层U形波纹管的疲劳寿命有限元分析   总被引:2,自引:0,他引:2  
应用非线性有限元法,综合考虑几何非线性、材料非线性和边界非线性等因素,采用平面轴对称单元和柔性的面-面接触对,建立了多层U形波纹管的非线性有限元模型,较好地解决了层间的接触问题.借助ANSYS软件对多层波纹管在轴向载荷与内压组合作用下的应力分布规律进行了探讨,利用结构的局部应力应变状态对波纹管的疲劳寿命进行了预测,同时考虑了波纹管的层数、壁厚减薄效应以及内压大小对于计算结果的影响,为波纹管的疲劳设计提供了依据.  相似文献   

18.
A multi-scale model which can be used to evaluate the interaction between a microstructure and the heterogeneous deformation behavior of ternary composites on the micro- to macroscopic scale has been developed based on the large deformation finite element homogenization method. Using four different interphases consisting of a rubber, two different types of polymer and an elastic material with intermediate stiffness of particle and matrix, the elasto-plastic behaviors of the composites have been confirmed to be markedly influenced by the interphase properties and the interphase with a stiffness well below that of the matrix shows a suitable effect on the micro- to macroscopic deformation behaviors of the composites. Therefore, a computational simulation has been performed for the present interphase to clarify the effects of the macroscopic strain ratio, interphase properties and particle volume fraction on macroscopic characteristics such as deformation resistance, elasticity modulus and yield stress, and on microscopic characteristics such as shear band pattern, mean stress in the matrix and normal stress on the particle surface. The results provide guidelines for selecting interphase properties and processing parameters to achieve desired overall composite characteristics.  相似文献   

19.
In this paper a general methodology for the modeling of material composite multilayered shell structures is proposed using a Hex-shell finite element modeling. The first part of the paper is devoted to the general FE formulation of the present composite 8-node Hex-shell element called SCH8, based only on displacement degrees of freedom. A particular attention is given to alleviate shear, trapezoidal and thickness locking, without resorting to the classical plane-stress assumption. The anisotropic material behavior of layered shells is modeled using a fully three dimensional elastic orthotropic material law in each layer, including the thickness stress component. Applications to laminate thick shell structures are studied to validate the methodology, and good results have been obtained in comparison with ABAQUS© commercial code.  相似文献   

20.
In the present paper, radial and hoop thermal and mechanical stress analysis of a rotating disk made of functionally graded material (FGM) with variable thickness is carried out by using finite element method (FEM). To model the disk by FEM, one-dimensional two-degree elements with three nodes are used. It is assumed that the material properties, such as elastic modulus, Poisson’s ratio and thermal expansion coefficient, are considered to vary using a power law function in the radial direction. The geometrical and boundary conditions are in the shape of two models including thermal stress (model-A) and mechanical stress (model-B). In model-A there exists no pressure in both external and internal layers, and there is a temperature distribution considered as a second order function in the radial direction of the rotating disk. In this case, the temperature dependency of the material properties is considered and a hyperbolic type is assumed for the geometry of the disk. In model-B, there is a constant pressure only on the internal layer and a pressure on the internal layer of the disk without temperature distribution but with different types of surface profiles. Furthermore, the displacements and stresses for various power law indices (N) and angular velocities are calculated and compared to other results in the literature. The effect of varying thicknesses and dependency of material properties on temperature distribution is investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号