首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
本文介绍了降低NOx排放浓度的分级燃烧技术——分解炉梯度燃烧自脱硝技术原理,并结合其在5?000 t/d生产线上的技术改造、调试及生产运行情况,阐述了应用分解炉梯度燃烧自脱硝的分级燃烧技术,可在不影响窑系统产质量、煤耗的前提下,较大幅度地降低氨水消耗,并与SNCR系统组合脱硝确保实现NOx≤100 mg/Nm3的超低排放要求。  相似文献   

2.
海螺水泥在水泥生产线建设过程中,注重开发与应用节能环保新技术,促进节能减排和环境保护.早在2004年,海螺水泥在铜陵、枞阳等4条10 000t/d线上,成功引进应用了分级燃烧低NOx控制技术,取得了丰富的实践经验.2008年与川崎公司联合开发了低NOx型C-KSV分解炉,并有21条生产线投入运行,减排效果良好.同时,芜湖海螺、铜陵海螺三条12 000t/d熟料生产线采用优化的分级燃烧技术,氮氧化物排放仅为500mg/Nm3左右.  相似文献   

3.
彭长寿 《水泥》2014,(9):29-30
<正>水泥回转窑系统低氮燃烧技术是应用广泛、经济实用的NOx减排措施。它通过改变燃烧设备的燃烧条件来降低NOx的形成,具体来说,是通过调节燃烧温度、烟气中的氧气浓度及烟气在高温区的停留时间等方法来抑制NOx的生成或还原已生成的NOx。低氮燃烧技术包括低氮燃烧器、分解炉空气分级燃烧及分解炉燃料分级燃烧等。笔者参与了多个水泥厂低氮燃烧技术的选择,本文对此给予介绍,并举例说明分解炉  相似文献   

4.
海螺水泥作为水泥行业领头羊,在水泥生产线建设过程中,注重开发与应用节能环保新技术,促进节能减排和环境保护。早在2004年,海螺水泥在TL、ZY等4条10000t/d线上,成功地引进应用了分级燃烧低NOx控制技术,取得了丰富的实际应用经验;2008年通过技术合作,成功开发了低NOx型C—KSV分解炉,目前在海螺已有28条低NOx型5000t/d生产线投入了运行,减排效果良好;2010年,WH海螺、TL海螺3条12000t/d熟料生产线采用优化的分级燃烧技术,  相似文献   

5.
随着国民经济的发展,环保形势日趋严峻,节能减排已成为我国水泥工业当前的重要课题。GB4915-2013《水泥工业大气污染物排放标准》规定,新建水泥企业的NOx(NO2@10%O2) 排放限值为400mg/Nm3,重点地区排放限值为320mg/Nm3。对国内各种类型水泥生产线的检测结果表明,2 000~5 000t/d新型干法生产线排放的NOx浓度一般大于850mg/Nm3。目前,我国接近60%水泥熟料生产线完成脱硝改造,但主要是以SNCR改造为主,脱硝成本较高,一般在3~5元/t熟料。为了降低脱硝成本,有必要采用工艺优化、分级燃烧等前置脱硝技术降低NOx排放。  相似文献   

6.
通过对生产线全面系统的测试,并借助化学分析、CFD模拟手段,研究生产线NOx减排技术,通过对风、煤、料的合理布置和分配,在分解炉建立了强还原区,降低回转窑内产生的NOx,同时抑制分解炉内NOx的产生量,进而达到降低NOx排放的目的。通过本技术的研究,分解炉出口NOx排放浓度可控制在500 mg/Nm3以下,降低了后续脱硝技术的运行成本,适合于大部分生产线脱硝技术改造。  相似文献   

7.
华润水泥某基地5 000 t/d生产线烧成系统在运行过程中NOx浓度较高,为使烟囱NOx排放满足控制要求, SNCR脱硝系统需长期持续喷入大量氨水,由此不仅吨熟料脱硝成本偏高,亦带来窑尾收尘器及管道等壳体钢板腐蚀严重等问题。笔者结合现场热工测试开展诊断分析,针对性地制定了分解炉燃料分级燃烧方案并于生产线大修期间实施完成,经过一段时间的调试运行,氨水用量大幅降低,对煤耗、产质量均无不良影响,技改优化取得良好的效果。  相似文献   

8.
梯度燃烧技术通过多级调控分解炉进风、喂料、喷煤方式,将分解炉炉膛空间进行功能分区,建立“强贫氧还原区—弱贫氧还原区—燃烬区”的燃烧气氛环境,从而实现NOx源头减排。本文开发了在线型梯度燃烧分解炉及配套旋流分散燃烧器,可将强还原区停留时间增加至2.5~3.0s,提升了自脱硝效果。该技术在滕州东郭生产线应用后,自脱硝效率>70%,分解炉出口稳定控制NOX≤260mg/Nm3,窑尾NOx排放浓度30~50mg/Nm3,熟料氨水用量<2.5kg/t,实现了水泥窑烟气NOx的低成本超低排放。  相似文献   

9.
国内某6 000t/d水泥熟料生产线实施了预热器降阻、分解炉扩容、分级燃烧和整体更换成第四代中置辊式破碎机冷却机等一系列改造实践。改造后,窑系统各项运行指标均有明显提升,分级燃烧结合SNCR脱硝系统实现了NOX<50mg/Nm3的超低排放,脱硝氨水(浓度20%)用量约3.6kg/t,达到了预期效果。  相似文献   

10.
随着我国经济的飞速发展,作为重要基础材料的水泥产品需求量极大且趋于稳定。水泥生产过程中的NOx排放与燃煤火电厂和汽车尾气产生的NOx排放已成为空气污染的主要来源,而分解炉是降低水泥生产工艺中NOx排放的有效设备。笔者在引入高温烟气的模拟分解炉内进行空气分级燃烧试验,研究配风位置、配风比例以及石灰石/煤比例对分解炉内燃烧和NOx排放特性的影响规律。试验稳定过程中,高温烟气发生装置的给煤量和配风量保持不变。此时,高温烟气发生装置的时间平均温度为911℃,其产生的高温烟气温度稳定在750℃左右,高温烟气中NOx主要以NO和N2O的形式存在,其浓度分别为261.49×10^-6和12.96×10^-6。该股高温烟气将模拟实际回转窑产生的烟气进入分解炉内。在分解炉的上部区域(距离顶部0~2 000 mm区域)的温度为800~1 000℃,与实际分解炉运行温度一致,排放烟气中NOx主要以NO和N2O形式存在。随着中间配风位置的下移,煤粉燃烧放热区域下移,而顶部区域的石灰石吸热量变化较小,则原有热量平衡被打破且原有吸热量高于现有放热量,导致顶部区域内燃烧温度降低。此时,还原气氛中煤粉燃烧和石灰石分解反应时间均变长,导致NOx的还原反应更加充分。但石灰石分解产生的氧化钙(CaO)作为中间产物会促进NO的生成反应,其反应时间增加也促进了NO的生成;另一方面,石灰石作为催化剂参与焦炭和挥发分还原NO的反应过程,分解炉顶部区域的温度下降使得该还原反应变弱。综上,NO的最终排放浓度是以上反应的综合结果。随着配风位置的下移,该变化对NO的生成作用更加明显,故NO的排放浓度逐渐升高。当一级风量与二级风量的配风比例降低时,分解炉上部区域的煤粉燃烧份额减少和石灰石分解量降低,而分解炉下部区域的煤粉燃烧份额增加和未分解的石灰石份额增加,但石灰石的吸热增加量高于燃烧增加份额的放热量,因此分解炉内整体温度均降低。分解炉内NO浓度是由石灰石催化的氧化过程和还原过程综合决定的。一级风量变小时,尾部CO浓度随之增加,烟气中NO浓度呈现降低的趋势。当石灰石/煤比例增加时,分解炉内沿程温度逐渐下降。随着石灰石给粉量增加,分解炉内石灰石受热分解产生的CaO浓度增加,CaO催化NO还原反应更剧烈,从而NO浓度逐渐降低。而石灰石给粉量增加和分解炉温度降低的过程导致尾部的CO浓度升高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号