首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 578 毫秒
1.
高压、高效率白光LED驱动电路的研究与设计   总被引:2,自引:0,他引:2       下载免费PDF全文
设计了一种高效率的高输入电压,恒定电流输出的白光LED驱动芯片.采用高压工艺,以脉宽调制(PWM)峰值电流的控制方式,实现了宽范围电压输入、恒定电流输出的LED驱动芯片的设计.内部集成了带隙电压基准源,产生0.25V的参考电压.芯片设计采用了高压横向扩散金属氧化物半导体场效应管(LDDMOS),设计了电压预调整电路,实现了输入电压范围在85V-400V间变化,输出电流在1毫安到1安培间设定.芯片仿真结果显示电能转换效率最高可达90%以上.  相似文献   

2.
解光军 《电子器件》2013,36(2):197-201
设计了一种高精度,高效率LED驱动电路,芯片输入电压6 V~40 V,可调恒定电流从350 mA到1 A以上。采用脉冲电平调制以及低边采样结构,与传统的峰值电流控制相比,脉冲电平调制法真正实现了对LED平均电流的控制,效率更高,电流更加精确。设计基于CSMC 0.5 m BCD工艺,并进行了一系列仿真验证。仿真结果表明,当输入电压不同或驱动LED个数不同时,输出电流精度能够被控制在±0.5%和±1%以内。芯片的整体转换效率最高可以达到96.9%,最多可驱动10个LED。  相似文献   

3.
江力  吴晓波  严晓浪 《半导体学报》2007,28(8):1289-1294
针对高端电流检测放大器输入级对宽输入共模电压范围的要求,对宽输入共模电压范围放大器的输入结构开展了研究,提出了一种宽共模输入范围的输入级结构,特点是具有低输入偏置电流,并能兼顾高低共模电平工作的需要.给出了整个电流检测放大器的电路设计.该放大器在1.5μm BCD工艺下设计实现.芯片的测试结果表明,当采用5V单电源供电时,电路的输入共模范围可达0~30V,最大总误差不超过1.67%.  相似文献   

4.
针对高端电流检测放大器输入级对宽输入共模电压范围的要求,对宽输入共模电压范围放大器的输入结构开展了研究,提出了一种宽共模输入范围的输入级结构,特点是具有低输入偏置电流,并能兼顾高低共模电平工作的需要.给出了整个电流检测放大器的电路设计.该放大器在1.5μm BCD工艺下设计实现.芯片的测试结果表明,当采用5V单电源供电时,电路的输入共模范围可达0~30V,最大总误差不超过1.67%.  相似文献   

5.
设计并实现了一种高精度低噪声运算放大器。提出了一种基极电流消除技术,补偿了输入对管基极电流,有效地降低了运算放大器的输入偏置电流,从而能够通过提高输入对管的集电极电流来减小输入噪声电压,实现了较低的运算放大器总等效输入噪声。同时,采用集电极-发射极电压补偿电路,消除了厄利效应的影响,提高了电路精度。电路采用36 V互补双极工艺流片,测试结果表明,芯片的失调电压为6.94μV,在1 kHz下的电压噪声密度为■,电流噪声密度为■。  相似文献   

6.
一种新型滞环电流控制电路的设计   总被引:2,自引:0,他引:2       下载免费PDF全文
传统的滞环电流控制电路通过共基极差分放大器采样电流信号,放大器的偏置电流会对检测电流有较大影响.提出了一种新型滞环电流控制电路,其采用宽共模输入电压范围的比较器结构,电流检测信号从双极型晶体管基极输入,能有效减小对检测电流的影响.该电路在25 V 1.5μm BCD工艺下设计实现,运用在白光LED恒流驱动芯片之中.仿真结果表明该电路的共模输入电压范围为5~25 V,从检测电流吸收的偏置电流不超过308 nA,能较好地完成恒流控制的功能.  相似文献   

7.
针对滞环恒流大功率LED驱动芯片,提出一款高性能电流采样电路。该电路采用高压工艺,可承受最高达40 V的输入电压。通过分析滞环控制的特点,采用串联电阻采样技术,结合匹配电流源结构,在保证响应速度和采样精度的同时,降低了电路的复杂度。电路中加入输入电压补偿电路,进一步提高了恒流控制的精度。在Cadence下的仿真结果表明,电路可在800 kHz的频率下正常工作,采样精度达99.78%;当电压从15 V变化至35 V时平均负载电流误差为0.81%;输出电压范围为0~5 V。  相似文献   

8.
介绍了利用CSMC 0.6μm CMOS工艺实现的、应用于电流模逻辑电路中的高线性度电压电流转换(VTC)电路。该电路采用了高增益两级运算放大器,以及工作在弱反型区的MOS管电压电流呈指数律关系实现的PTAT基准电流源。详细分析了电阻与运算放大器的非线性影响因素。测试结果表明,输出的总谐波失真为0.0002%,输入动态范围为0~2.6V,输出电流为50~426μA,PTAT基准电流源对电源变化的灵敏度为0.0217。芯片采用5V供电,功耗约为1.3mW,芯片面积为0.112mm2。  相似文献   

9.
基于0.6 μm BiCMOS工艺,设计了一款高精度电荷泵电源管理芯片.该芯片利用2倍压电荷泵电源转换原理,芯片内部集成了具有优异频率响应的振荡器电容,施密特触发器提供内部精准频率,PFM调制提供稳定的输出电压.测试结果表明,芯片输入电压范围为2.7~5.5V,输出电压为5V,电压纹波小于20 mV,内部振荡频率为700 kHz,低功耗模式时电流仅为6.73 μA.  相似文献   

10.
针对目前车用电压调节器体积大、稳定性差和寿命短等问题,设计了一款用于汽车的电压调节器芯片。该芯片通过PWM技术调整发电机励磁绕组的平均励磁电流,稳定了发电机输出电压。同时,该芯片集成了低温漂、高精度的电压基准源与电流源,还具有欠压锁定与过温保护电路,提高了系统可靠性。芯片基于0.5 μm BCD工艺进行设计,采用Cadence Spectre进行仿真。仿真结果表明,该芯片工作电压是720 V,静态电流仅为472 μA,电压调节范围1020 V,基准电压1.16 V,工作温度范围-40125 ℃,温度系数8.4 ppm·℃ -1,且当发电机输出电压波动时,该芯片可使输出电压稳定。  相似文献   

11.
基于HHNEC 0.35μm 40 V BCD工艺,采用峰值电流检测模式的脉冲宽度调制方式,设计了一款能在8~42 V的输入电压范围内,-40~125℃的温度范围内正常工作的高转换效率、高输出电流精度的发光二极管(LED)驱动电路,版图面积为925.3μm×826.8μm。利用带负反馈的预稳压电路为基准源电路和线性稳压器提供稳定的工作电压,新颖求和型CMOS基准电流源提供低温漂、高精度的偏置电流,带预抑制电路的基准电压源提供高精度的参考电压,提高了输出电流的精度。仿真结果表明,在典型工艺角TT下,当输入电压为40 V,驱动9个LED,输出电流为400 mA时,该LED驱动电路转换效率为95.8%,输出电流精度为1.75%。  相似文献   

12.
To improve the compensation for the inherent instability in a current mode converter,the adaptive slope compensation,giving attention to the problems of the traditional compensation on compensation accuracy,loading capability and turning jitter,is presented.Based on the analysis of current loop,by detecting the input and output voltage, converting the adaptive slope compensation current,the compensation of the current loop is optimized successfully.It can not only improve the compensation accuracy but al...  相似文献   

13.
彭雪峰 《电子世界》2013,(22):23-24
本设计能够精确的测量直流电压、交流电压,具有测量精度高,抗干扰能力强等特点。整个系统可以用一块9V电池供电,实现了低功耗和便携功能。交流测量是用AD637真有效值转换芯片将交流信号转换成直流电压后测量;用带钳位保护的反向放大器进行输入电压转换,实现了10MΩ的输入阻抗和高安全性。电路中关键器件采用TI公司的精密运算放大器OPA07和仪表放大器INA128,实现了高精度的测量;ADC采用STM32f103ZET6片内自带的12位AD,实现了低功耗,量程自动切换功能。  相似文献   

14.
该单相AC-DC变换电路以有源功率因数控制器UCC28019为核心,STM32F103做主控芯片,采用主控芯片片上DAC调节UCC28019电压误差放大器反馈端,控制输出电压稳定输出;设计功率因数测量电路、输出保护电路、功率因数调整电路等电路模块。经测试,系统输入电压为24 V时,输出2 A电流时可稳定输出36 V电压,负载调整率为0.02%,电压调整率为0.028%,功率因数测量最大误差为0.02,过流保护动作电流为2.54 A,交流输入侧功率因数校正后最高达99.9%,转换效率达96.7%,功率因数在0.81.0稳定可调。  相似文献   

15.
基于结型场效应晶体管(JFET)和双极型晶体管(BJT)兼容工艺,设计了一种低失调高压大电流集成运算放大器。电路输入级采用p沟道JFET (p-JFET)差分对共源共栅结构;中间级以BJT作为放大管,采用复合有源负载结构;输出级采用复合npn达林顿管阵列,与常规推挽输出结构相比,在输出相同电流的情况下,节省了大量芯片面积。基于Cadence Spectre软件对该运算放大器电路进行了仿真分析和优化设计,在±35 V电源供电下,最小负载电阻为6Ω时的电压增益为95 dB,输入失调电压为0.224 5 mV,输入偏置电流为31.34 pA,输入失调电流为3.3 pA,单位增益带宽为9.6 MHz,具有输出9 A峰值大电流能力。  相似文献   

16.
白欣然 《电声技术》2014,38(12):35-40
采用ATMEGA8芯片和一些外设电路来完成数字电压电流表的设计,能够对输入的0~30 V电压及0~5 A电流进行测量,并通过一个四位一体的8段LED数码管进行轮流显示,测量精度应小于1%。使用Protel99 SE软件进行绘制电路原理图以及PCB图,并在proteus软件上进行仿真,经设计后的系统具有集成度高、灵活性强、易于开发、维护、扩展等特点。最后结合了软件进行调试,该系统达到设计的目的,高精度地显示了所测量的电压电流值。  相似文献   

17.
丁有源  王青松  牛伟东 《半导体技术》2021,46(2):129-133,157
基于0.25μm GaAs增强/耗尽型(E/D模)赝配高电子迁移率晶体管(PHEMT)工艺,设计并实现了一款集成了并行驱动器的多功能单片微波集成电路(MMIC)芯片。该芯片的移相器采用磁耦合全通网络(MCAPN)结构,功率分配器则使用集总元件进行集成,不仅缩小了芯片面积,并且在超宽带下实现了较好的相位精度和幅度一致性。采用微波探针台对芯片进行在片测试,结果表明在0.5~2.7 GHz,芯片性能良好:其小信号RF输入功率为0 dBm,芯片的插入损耗不大于7 dB,幅度波动在±0.8 dB以内,相位差为-98°~-85°,输入电压驻波比(VSWR)不大于1.9∶1,输出VSWR不大于1.9∶1,在-5 V电源下驱动器的静态电流为1 mA,响应速度为25 ns。芯片尺寸为3.4 mm×1.8 mm。该电路具有响应速度快、功耗低、集成度高等特点,可应用于多波束天线系统中。  相似文献   

18.
本文提出一种适用于恒定导通时间控制的开启时间定时器电路。电路中采用与输入电源电压成正比的电流对电容充电,从而实现定时器的定时时间与输入电源电压成反比,解决了传统恒定导通时间控制中系统工作频率随输入电源电压变化的问题。为了获得高的定时精度,开启时间定时器中的比较器采用了自适应偏置技术,根据输入电源电压的情况动态地设置定时器中比较器的偏置电流。基于0.6μmCD工艺,对所设计开启时间定时器电路进行仿真验证。结果表明,本文所设计的开启时间定时器电路,能够始终保证高的定时精度。同时由于定时时间与输入电源电压成反比,在系统中引入了前馈,极大地提高了系统的线性响应速度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号