首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 906 毫秒
1.
高压、高效率白光LED驱动电路的研究与设计   总被引:2,自引:0,他引:2       下载免费PDF全文
设计了一种高效率的高输入电压,恒定电流输出的白光LED驱动芯片.采用高压工艺,以脉宽调制(PWM)峰值电流的控制方式,实现了宽范围电压输入、恒定电流输出的LED驱动芯片的设计.内部集成了带隙电压基准源,产生0.25V的参考电压.芯片设计采用了高压横向扩散金属氧化物半导体场效应管(LDDMOS),设计了电压预调整电路,实现了输入电压范围在85V-400V间变化,输出电流在1毫安到1安培间设定.芯片仿真结果显示电能转换效率最高可达90%以上.  相似文献   

2.
文中提出了一种宽电压输入、高效率、高调光比LED恒流驱动电路。在迟滞电流控制模式下,该电路具有结构简单、动态响应快、不需要补偿电路等优点。通过外部引脚,可以方便的进行LED开关、模拟调光和PWM调光。LED恒流驱动电路基于CSMC的1μm40VCDMOS工艺,采用HSPICE进行仿真验证,结果表明在8~30V输入电压范围内,电路输出电流最大可达1.2A,输出电流精度可控制在5.5%以内,电源效率可高达97%。  相似文献   

3.
针对传统CMOS带隙电压基准源电路电源电压较高,基准电压输出范围有限等问题,通过增加启动电路,并采用共源共栅结构的PTAT电流产生电路,设计了一种高精度、低温漂、与电源无关的具有稳定电压输出特性的带隙电压源.基于0.5μm高压BiCMOS工艺对电路进行了仿真,结果表明,在-40℃~85℃范围内,该带隙基准电路的温度系数为7ppm/℃,室温下的带隙基准电压为1.215 V.  相似文献   

4.
一个1.2 V,9 ppm/℃的CMOS带隙电压基准源   总被引:3,自引:3,他引:0  
钟昌贤  张波  周浩  卢杨 《现代电子技术》2006,29(16):120-122,125
基于传统CMOS带隙电压基准源电路的分析,结合曲率补偿技术设计了一种带衬底驱动运算放大器的低电源电压的电压基准源电路,主体电路采用电流模式基准源结构,并结合所采用的衬底驱动运放作为基准源的负反馈运放。整个电路采用0.5μm标准CMOS工艺实现,在电源电压1.2 V的条件下用HSpice进行仿真,仿真结果表明输出基准电压在-40~120℃范围内温度系数为9 ppm/℃。  相似文献   

5.
张强  陈贵灿  田泽  王进军  李攀 《电子工程师》2007,33(9):21-24,59
设计了一款带有软启动电路的精密CMOS带隙基准源,并且利用PN结正向导通电压具有负温度系数和基准源提供的偏置电流具有正温度系数的原理实现了过温保护功能。采用UMC公司0.6μm 2P2M标准CMOS工艺进行设计和仿真,HSPICE模拟表明带隙基准的输出电压为1.293 V,且具有较高的精度和稳定性。在1.5V~4.0V的电源电压范围内基准随输入电压的最大偏移为0.27 mV;在-40℃~120℃的温度范围内,基准随温度的变化约为4.41 mV;基准的输出启动时间约为25μs;当工作温度超过160℃时过温保护电路将输出使能信号关断整个系统。  相似文献   

6.
崔嘉杰  罗萍 《微电子学》2014,(4):416-419
基于CSMC 0.5μm标准CMOS工艺,设计了一种高精度电流型CMOS带隙基准电压源。仿真结果表明,温度在-40℃~125℃范围内,基准输出电压的温度系数为1.3×10-5/℃;电源电压在3.3~5 V之间变化时,基准输出电压变化为0.076 mV,电源抑制比PSRR为-89 dB。同时,该电路包含修调电路,可在不同工艺角下进行校正,具有温度系数低、电源抑制比高、精度高等特点。  相似文献   

7.
双极型高精度大负载电流集成电压基准源设计   总被引:1,自引:0,他引:1  
设计并实现了一种基于双极型工艺的2.5V高精度大负载电流集成基准电压源电路,通过对传统带隙基准电路的改进,设计中增加了电源电压分配电路、电流反馈电路和大电流驱动电路,实现高精度大负载电流的目标.通过Cadence软件平台下的Spectre仿真器对电路的温度系数、负载调整率、噪声、交流电源纹波抑制比、负载电流、启动时间等电参数进行仿真验证,得到了初始精度±0.5%,在-40~85℃范围内温度系数小于6×10-6/℃,负载电流0~50 mA,电源电压4.5~36 V,输出为2.5 V的集成电压基准源电路.该电路采用6 μm/36 VK极型工艺生产制造,芯片面积为1.7 mm×2.1 mm,具有过热保护、过流保护和反接保护功能.  相似文献   

8.
解光军 《电子器件》2013,36(2):197-201
设计了一种高精度,高效率LED驱动电路,芯片输入电压6 V~40 V,可调恒定电流从350 mA到1 A以上。采用脉冲电平调制以及低边采样结构,与传统的峰值电流控制相比,脉冲电平调制法真正实现了对LED平均电流的控制,效率更高,电流更加精确。设计基于CSMC 0.5 m BCD工艺,并进行了一系列仿真验证。仿真结果表明,当输入电压不同或驱动LED个数不同时,输出电流精度能够被控制在±0.5%和±1%以内。芯片的整体转换效率最高可以达到96.9%,最多可驱动10个LED。  相似文献   

9.
提出了一种新颖的带有软启动的高精密CMOS带隙基准电压源。采用UMC的0.6μm2P2M标准CMOS工艺进行设计和仿真,HSPICE模拟表明该电路具有较高的精度和稳定性,带隙基准的输出电压为1.293 V,在1.5 V~4 V电源电压范围内基准随输入电压的最大偏移为0.27 mV,基准的最大静态电流约为19μA;在-40℃~120℃温度范围内,基准随温度的变化约为4.41 mV,产生的偏置电流基本上不受电源电压的影响,而与温度成线性关系;在电源电压为3 V时,基准的总电流约为14.25μA,功耗约为42.74μW;并且基准具有较高的电源抑制比和较低的噪声(小于500 nV/Hz1/2),基准的输出启动时间约为25μs。  相似文献   

10.
一种高温度性能的带隙基准源   总被引:1,自引:0,他引:1       下载免费PDF全文
基于OKI 0.5μm BiCMOS工艺,设计了一种低温漂的带隙基准电压源。对传统基准源的电压模式输出级进行了改进,使之形成同时包含电压模式和电流模式的混合模式输出级,提高了温度补偿的灵活性。同时设计了一种基于分段线性补偿技术的高精度曲率校正电路,精确地对基准电压的高阶温度分量进行修调。 HSPICE仿真结果表明,在5 V的电源电压下,基准输出电压为1.2156 V,在-40℃~125℃温度范围内,基准电压的温度系数为0.43×10-6/℃,低频时电路电源抑制比低于-83 dB。电源电压在3.8 V~10 V范围内变化时,基准源的线性调整率为9.2μV/V。  相似文献   

11.
实现了一种具有超高电压输入、高精度、大调光范围、低成本的非隔离型LED恒流驱动芯片。芯片采用外接高压三极管的电压调整结构以及高精度基准电压源,以PWM峰值电流控制方式实现了高精度、高一致性的电流输出。芯片采用18 V耐压的工艺流片,实现输入电压范围从10 V达到450 V变化,电能转换效率高达92%,驱动电流可从几毫安到超过1 A间设定,电流精度和一致性可达1.5%。  相似文献   

12.
针对滞环恒流大功率LED驱动芯片,提出一款高性能电流采样电路。该电路采用高压工艺,可承受最高达40 V的输入电压。通过分析滞环控制的特点,采用串联电阻采样技术,结合匹配电流源结构,在保证响应速度和采样精度的同时,降低了电路的复杂度。电路中加入输入电压补偿电路,进一步提高了恒流控制的精度。在Cadence下的仿真结果表明,电路可在800 kHz的频率下正常工作,采样精度达99.78%;当电压从15 V变化至35 V时平均负载电流误差为0.81%;输出电压范围为0~5 V。  相似文献   

13.
基于降压型结构,设计了一种高精度的恒流LED驱动电路。在滞环控制模式的基础上,采用一种新型的自适应关断时间控制环路替代谷值检测反馈环路,间接地实现了对电感电流谷值的精确控制,避免了对谷值直接采样所带来的误差,提升了系统的恒流精度。控制环路采用低边采样方式,降低了采样电阻上的损耗,提升了系统的转换效率。该LED驱动电路基于TSMC 0.18μm 70 V BCD工艺进行了仿真与设计。结果表明,在20~125 mA负载电流范围内,最大恒流误差不超过0.8%。在20~100 V输出电压范围内,平均电流变化率小于1%。  相似文献   

14.
本文基于0.5μm 5V DPTM CMOS工艺设计了一款用于LED驱动芯片的衬底电位选择电路。该电路采用峰值电流镜作为偏置,使其在低电压下能够正常工作,并运用源端输入带正反馈的比较器,使得电路具有一定的迟滞和高的转换速率,最后巧妙的设计了输出级,使输出结果尽可能的与芯片中的最高电压相等。仿真结果显示,比较器的转换速率为55.7V/μs,并且具有0.2V的迟滞,满足设计要求。  相似文献   

15.
刘锡锋  居水荣  石径  瞿长俊 《半导体技术》2017,42(11):820-826,875
设计了一款高输出电压情况下的高精度低功耗电压基准电路.电路采用了比例采样负反馈结构达到较高和可控的输出电压,并利用曲率补偿电路极大地减小了输出电压的温度系数.针对较宽输入电压范围内的超低线性调整率规格,给出了多级带隙级联的电路结构.针对功耗和超低负载调整率的问题,电路采用了基于运算放大器的限流模式和内置大尺寸横向扩散金属氧化物半导体(LDMOS)晶体管的设计.该电路在CSMC 0.25 μm高压BCD工艺条件下进行设计、仿真和流片,测试结果表明,该电压基准输出电压为3.3V,温度系数为19.4×10-6/℃,线性调整率为5.6 μV/V,负载调整率为23.3 μV/V,工作电流为45 μA.  相似文献   

16.
俞德军  孙明远  宁宁  刘洋 《半导体技术》2017,42(12):888-891,928
提出了一种改进的高输入电压调整电路结构,该电路结构在TSMC 0.25 μm BCD工艺平台进行验证.电路包括两个参考电压模块、两级调整电路和一个关断信号产生模块.介绍了初级电压调整和精确电压调整电路,可以产生稳定精确的输出电压,同时也提高了低输入电源电压时的输出电流能力.通过两级电源调整电路可以实现软启动功能,减小启动浪涌电压,提高启动性能.此外,关断模块产生可以可靠关闭高压模块和低压模块的两种控制信号,使得在待机模式下高压直流转换系统仅消耗极低的待机电流.该电路结构的输入电压可以在2.5~45 V宽幅范围内变化.在待机模式下,高压直流转换系统的待机电流最低仅300 nA,电源调整电路可以输出最高60 mA的负载电流.  相似文献   

17.
A high performance white light emitter diode (LED) driver based on boost converter with novel single-wire serial-pulse digital dimming (SWSP) is proposed. The driver uses external serial programmed pulses and internal clock to simplify brightness control. By embedding a 5-bit digital analog converter (DAC) into the driver, wide dimming range is achieved. Moreover, a new dynamic slope compensation circuit is presented and other key circuits of the driver are optimized to get higher efficiency and fast transition response. A practical circuit is implemented with 0.6 um bipolar complementary-metal-oxide-semiconductor double-diffused-metal-oxide-semiconductor (BCD) technology. The simulation results show that the driver can provide both wide output current from 1.3 mA to 42 mA with 32-level digital dimming and higher efficiency up to 83% while it works at 1 MHz switching frequency with the input voltage variation from 2.7 V to 5.5 V.  相似文献   

18.
LED(Light Emitting Diode)作为新一代绿色光源,具有节能、环保和光转换效率高等特点,在照明应用方面已广泛展开.尤其是大功率LED光源更是备受喜爱,由于LED光源不能直接用市电220v电压直接供电,需特殊电压供电,因此,需要专门的驱动电路来点亮LED.本论文主要介绍一种LED恒流驱动电路,其采用恒流芯片PT4115来实现对大功率LED的高效恒流驱动.此电路具有效率高、成本低,可靠,安全等优点,适合当今大功率LED驱动电路的市场发展前景.  相似文献   

19.
设计了一种应用于模数转换的高精度带隙基准电压源和电流源电路,利用温度补偿技术,该电路能分别产生零温度系数的基准电压VREF、零温度系数的基准电流IZTAT。仿真结果显示,采用标准0.18μm CMOS工艺,在室温27℃和2.8 V电源电压的条件下,电路工作频率为10 Hz和1 kHz时,电源抑制比(PSRR)分别为–107 dB和–69 dB,VREF及IZTAT的温度系数分别是20.6×10–6/℃和40.3×10–6/℃,功耗为238μW,可在2.4~3.6 V电源电压范围内正常工作。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号