首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fill factor of polymer bulk heterojunction solar cells (PSCs), which is mainly governed by the processes of charge carrier generation, recombination, transport and extraction, and the competition between them in the device, is one of the most important parameters that determine the power conversion efficiency of the device. We show that the fill factor of PSCs based on thieno[3,4-b]-thiophene/benzodithiophene (PTB7):[6,6]-phenyl C71-butyric acid methylester (PC71BM) blend that only have moderate carrier mobilities for hole and electron transport, can be enhanced to 76% by reducing the thickness of the photoactive layer. A drift–diffusion simulation study showed that reduced charge recombination loss is mainly responsible for the improvement of FF, as a result of manipulating spatial distribution of charge carrier in the photoactive layer. Furthermore, the reduction of the active layer thickness also leads to enhanced built-in electric field across the active layer, therefore can facilitate efficient charge carrier transport and extraction. Finally, the dependence of FF on charge carrier mobility and transport balance is also investigated theoretically, revealing that an ultrahigh FF of 80–82% is feasible if the charge mobility is high enough (∼10−3–10−1 cm2/V s).  相似文献   

2.
We report on an alternating current (AC) field induced organic electroluminescence (EL) device with internal charge carrier generation and recombination luminance of over 5000 cd m?2 under AC drive without charge carrier injection from external electrodes. The ultra-bright AC-EL is attributed to an optical optimization performed on the devices via numerical optical simulations based on an optical thin film model as well as an increase in the number of charge carriers achieved via the concept of molecular doping within the device. The luminance levels achieved are highest reported so far in literature for AC organic light emitting devices.  相似文献   

3.
《Organic Electronics》2008,9(3):396-400
The hole mobility in 9-(2-ethylhexyl)carbazole so-called liquid carbazole, in poly(N-vinylcarbazole) (PVK) and in their blends is determined by time-of-flight experiment using a phthalocyanine charge generation layer. With an applied electric field of 2.5 × 105 V/cm, mobilities of 4 × 10−6 cm2/Vs and 6 × 10−7 cm2/Vs are measured in liquid carbazole and PVK, respectively. The enhancement of the charge carrier mobility in liquid carbazole is attributed to both a larger transfer integral and changes in the distribution of the excimer trapping sites. The results show the potential interest of liquid carbazole for electroactive applications in optoelectronics.  相似文献   

4.
The influence of high energy electron (HEE) irradiation from a Sr-90 radio-nuclide on n-type Ni/4H–SiC samples of doping density 7.1×1015 cm−3 has been investigated over the temperature range 40–300 K. Current–voltage (I–V), capacitance–voltage (C–V) and deep level transient spectroscopy (DLTS) were used to characterize the devices before and after irradiation at a fluence of 6×1014 electrons-cm−2. For both devices, the I–V characteristics were well described by thermionic emission (TE) in the temperature range 120–300 K, but deviated from TE theory at temperature below 120 K. The current flowing through the interface at a bias of 2.0 V from pure thermionic emission to thermionic field emission within the depletion region with the free carrier concentrations of the devices decreased from 7.8×1015 to 6.8×1015 cm−3 after HEE irradiation. The modified Richardson constants were determined from the Gaussian distribution of the barrier height across the contact and found to be 133 and 163 A cm−2 K−2 for as-deposited and irradiated diodes, respectively. Three new defects with energies 0.22, 0.40 and 0.71 eV appeared after HEE irradiation. Richardson constants were significantly less than the theoretical value which was ascribed to a small active device area.  相似文献   

5.
We determined the optimum phase structure of WO3-loaded TiO2 nanotubes (WTNs) for hydrogen generation via photoelectrochemical (PEC) water splitting by controlling the annealing temperature. The surface morphology of WTNs was closely related to crystal growth and phase transformation. The nanotubular structure completely collapsed at 700 °C due to the anatase–rutile phase transformation. In PEC studies, high-crystallinity anatase-phase WTNs exhibited a higher photocurrent density (2.4 mA/cm2) than WTNs of amorphous or polycrystalline (anatase+rutile) phases. This can mainly be attributed to better charge carrier separation and transportation in PEC water splitting by providing an effective way to address recombination losses.  相似文献   

6.
High-performance tandem organic light-emitting diodes (OLEDs) employing a buffer-modified C60/pentacene organic semiconductor heterojunction (OHJ) as a charge generation layer (CGL) are demonstrated. The unique cooperation of charge generation, transport, and extraction processes occurred in the OHJ-based CGL remarkably reduces the operational voltage. As a result, an approximately twofold enhancement in power efficiency (21.9 lm W?1 VS 10.1 lm W?1) can be achieved that has previously been suggested to be difficult for tandem OLEDs. When the pentacene is replaced by zinc phthalocyanine (ZnPc), copper phthalocyanine (CuPc), or phthalocyanine (H2Pc), a similar power efficiency improvement can be also achieved. The novel design concept of the buffer-modified OHJ-based CGL is superior to that of the conventional CGLs. The investigations on the operational mechanism are performed, from which it is found that the mobile charge carriers firstly are needed to be accumulated at both sides of the heterojunction interface and then transport along the two organic semiconductors in terms of their good carrier transport characteristics under an external electrical field, and finally inject into the corresponding electroluminescent (EL) units by the interfacial layers.  相似文献   

7.
Using high-work-function material MoO3 as a p-type dopant, efficient single-layer hybrid organic light-emitting diodes (OLEDs) with the p–i–n homojunction structure are investigated. When MoO3 and Cs2CO3 are doped into the conventional emitting/electron-transport material tris-(8-hydroxyquinoline) aluminum (Alq3), respectively, a significant increase in p- and n-type conductivities is observed compared to that of intrinsic Alq3 thin films. With optimal doping, the hole and electron mobilities in Alq3:MoO3 and Alq3:Cs2CO3 films was estimated to be 9.76 × 10−6 and 1.26 × 10−4 cm2/V s, respectively, which is about one order of magnitude higher than that of the undoped device. The p–i–n OLEDs outperform undoped (i–i–i) and single-dopant (p–i–i and i–i–n) OLEDs; they have the lowest turn-on voltage (4.3 V at 1 cd/m2), highest maximum luminance (5860 cd/m2 at 11.4 V), and highest luminous efficiency (2.53 cd/A at 100 mA/cm2). These values are better than those for bilayer heterojunction OLEDs using the same emitting layer. The increase in conductivity can be attributed to the charge transfer process between the Alq3 host and the dopant. Due to the change of carrier concentration in the Alq3 films, the Fermi level of Alq3 is close to the highest occupied molecular orbital (HOMO) or lowest unoccupied molecular orbital (LUMO) energy levels upon p- and n-type doping, respectively, and the carrier injection efficiency can thus be enhanced because of the lower carrier injection barrier. The carriers move closer to the center energy levels of the HOMO or LUMO distributions, which increases the hopping rate for charge transport and results in an increase of charge carrier mobility. The electrons are the majority charge carriers, and both the holes and electrons can be dramatically injected in high numbers and then efficiently recombined in the p–i–n OLEDs. As a result, the improved conductivity characteristics as well as the appropriate energy levels of the doped layers result in improved electroluminescent performance of the p–i–n homojunction OLEDs.  相似文献   

8.
We report on the development and detailed investigation of highly efficient pin phosphorescent organic light-emitting diodes (PhOLEDs) using 4,4′-bis(carbazol-9-yl)-biphenyl (CBP) as a single organic semiconductor matrix. Following optimization of doping concentration of both the phosphorescent emitter molecule and of the p- and n-type dopants, an external quantum efficiency (EQE) of 15% and a power efficiency (PE) of 28 lm/W are realized at a luminance of 1000 cd/m2. These values are comparable to the state-of-the-art for conventional complex multilayered PhOLEDs. By analyzing the device characteristics (i.e. electroluminescence spectra, the current density–voltage behavior of single carrier devices, the transient electroluminescent decay, and the impedance spectroscopy response), we find that the device performance is closely linked to the charge carrier balance in the device, which in turn is governed by the interplay of the conductivities of the doped layers and the transport of each charge carrier species within the emitting layer.  相似文献   

9.
The formation of interface and border states in metal–oxide–semiconductor structures associated with the generation of embedded germanium nanocrystals in 20 nm SiO2-layers by means of ion implantation and a subsequent annealing was examined. Deep level transient spectroscopy and related time-domain techniques were applied in order to study the charge trapping and emission at the Si–SiO2 interface. A significant dependence of the interface state density Dit on the conditions of the cluster generation was found. Any Ge-implanted sample features a pronounced level at about 0.31 eV above the valence band edge and a concentration above 1013 cm?2 eV?1, likely related to a Pb-center. A systematic variation of the filling pulse parameters was utilized in order to separate the response of fast and slow states, and to substantiate the existence of border traps located in the vicinity of the Si–SiO2 interface. The role of interface and border traps for the relaxation of the trapped charge in the nanocrystals is illustrated.  相似文献   

10.
Donor–acceptor (D–A) type conjugated polymers have been developed to absorb longer wavelength light in polymer solar cells (PSCs) and to achieve a high charge carrier mobility in organic field-effect transistors (OFETs). PDTDP, containing dithienothiophene (DTT) as the electron donor and diketopyrrolopyrrole (DPP) as the electron acceptor, was synthesized by stille polycondensation in order to achieve the advantages of D–A type conjugated polymers. The polymer showed optical band gaps of 1.44 and 1.42 eV in solution and in film, respectively, and a HOMO level of 5.09 eV. PDTDP and PC71BM blends with 1,8-diiodooctane (DIO) exhibited improved performance in PSCs with a power conversion efficiency (PCE) of 4.45% under AM 1.5G irradiation. By investigating transmission electron microscopy (TEM), atomic force microscopy (AFM), and the light intensity dependence of JSC and VOC, we conclude that DIO acts as a processing additive that helps to form a nanoscale phase separation between donor and acceptor, resulting in an enhancement of μh and μe, which affects the JSC, EQE, and PCE of PSCs. The charge carrier mobilities of PDTDP in OFETs were also investigated at various annealing temperatures and the polymer exhibited the highest hole and electron mobilities of 2.53 cm2 V−1 s−1 at 250 °C and 0.36 cm2 V−1 s−1 at 310 °C, respectively. XRD and AFM results demonstrated that the thermal annealing temperature had a critical effect on the changes in the crystallinity and morphology of the polymer. The low-voltage device was fabricated using high-k dielectric, P(VDF-TrFE) and P(VDF-TrFE-CTFE), and the carrier mobility of PDTDP was reached 0.1 cm2 V−1 s−1 at Vd = −5 V. PDTDP complementary inverters were fabricated, and the high ambipolar characteristics of the polymer resulted in an output voltage gain of more than 25.  相似文献   

11.
《Organic Electronics》2008,9(6):1061-1068
We have investigated a series of oligothiophenes in organic thin film transistors (TFTs), with special emphasis on their thin film morphology related to device performance and application requirements. The transistor performance was studied for devices fabricated at different substrate temperatures during semiconductor deposition (ranging from room temperature to 120 °C). A significant dependence of thin film morphology on the substrate temperature was observed, whereas the charge carrier mobility in devices occurs almost unaffected. We have tested the long-term stability of 78 transistor devices (shelf-life in ambient conditions) over a period up to 100 days. Only a small degradation in mobility by less than one order of magnitude was observed. Investigations at elevated temperatures during TFT operation (room temperature to 105 °C) show that devices with α,α′-hexylsexithiophene (Hex-6T-Hex) degrade in their charge carrier mobility by a factor of 8, but completely recover to their initial value of 0.7 cm2/Vs after a short period of storage at room temperature in ambient conditions.  相似文献   

12.
Cu2ZnSnS4 (CZTS) is low cost and constitutes non-toxic materials abundant in the earth crust. Environment friendly solar cell absorber layers were fabricated by a thermal co-evaporation technique. Elemental composition of the film was stated by energy dispersive spectroscopy (EDS). Some optical and electrical properties such as absorption of light, absorption coefficient, optical band gap charge carrier density, sheet resistance and mobility were extracted. Optical band gap was found to be as 1.44 eV, besides, charge carrier density, resistivity and mobility were found as 2.14×1019 cm−3, 8.41×10−4 Ω cm and 3.45×102 cm2 V−1 s−1, respectively. In this study Ag/CZTS/n-Si Schottky diode was fabricated and basic diode parameters including barrier height, ideality factor, and series resistance were concluded using current–voltage and capacitance–voltage measurements. Barrier height and ideality factor values were found from the measurements as 0.81 eV and 4.76, respectively, for Ag/CZTS/n-Si contact.  相似文献   

13.
The DC and microwave characteristics of Lg = 50 nm T-gate InAlN/AlN/GaN High Electron Mobility Transistor (HEMT) on SiC substrate with heavily doped n+ GaN source and drain regions have demonstrated using Synopsys TCAD tool. The proposed device features an AlN spacer layer, AlGaN back-barrier and SiN surface passivation. The proposed HEMT exhibits a maximum drain current density of 1.8 A/mm, peak transconductance (gm) of 650 mS/mm and ft/fmax of 118/210 GHz. At room temperature, the measured carrier mobility, sheet charge carrier density (ns) and breakdown voltage are 1195 cm2/Vs, 1.6 × 1013 cm−2 and 18 V respectively. The superlatives of the proposed HEMTs are bewitching competitor for future monolithic microwave integrated circuits (MMIC) applications particularly in W-band (75–110 GHz) high power RF applications.  相似文献   

14.
MIS structures using HfO2 and HIZO layers, both deposited by room temperature RF magnetron sputtering are fabricated for TFTs application and characterized using capacitance-voltage. The relative dielectric constant obtained at 1 kHz was 11, the charge carrier concentration of the HIZO was in the range of (2–3) × 1018 cm 3 and the interface trap density at flat band was smaller than 2 × 1012 cm 2. The critical electric field of the HfO2 layer was higher than 5 × 105 V/cm, with a current density in the operating voltage range below 4 × 10 8 A/cm2. The hysteresis and bias stress behavior of RF-sputtered HfO2/HIZO MIS structures is presented. Fabricated HfO2/HIZO TFTs worked in the operation voltage range below 8 V.  相似文献   

15.
ZnO films were deposited on glass substrates in the temperature range of 350–470 °C under an atmosphere of compressed air or nitrogen (N2) by using ultrasonic spray pyrolysis technique. Structural, electrical and optical properties of the ZnO films were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), electrical two-probe and optical transmittance measurements. The ZnO films deposited in the range of 350–430 °C were polycrystalline with the wurtzite hexagonal structure having preferred orientation depending on the substrate temperature. The ZnO films deposited below 400 °C had a preferred (100) orientation while those deposited above 400 °C mostly had a preferred (002) orientation. The resistivity values of ZnO films depended on the types of carrier gas. The ZnO thin films deposited under N2 atmosphere in the range of 370–410 °C showed dense surface morphologies and resistivity values of 0.6–1.1 Ω-cm, a few orders of magnitude lower than those deposited under compressed air. Hydrogen substition in ZnO possibly contributed to decreasing resistivity in ZnO thin films deposited under N2 gas. The Hall measurements showed that the behavior of ZnO films deposited at 410 °C under the N2 atmosphere was n-type with a carrier density of 8.9–9.2×1016 cm-3 and mobility of ~70 cm2/Vs. ZnO thin films showed transmission values at 550 nm wavelength in a range of 70–80%. The values of band gaps extrapolated from the transmission results showed bandgap shrinkage in an order of milli electron volts in ZnO films deposited under N2 compared to those deposited under compressed air. The calculation showed that the bandgap reduction was possibly a result of carrier–carrier interactions.  相似文献   

16.
We have made a quantitative study about the thermal activation of thermal donors in high resistivity magnetic Czochralski silicon. The thermal donor activation has been performed through a thermal treatment at 430 °C up to a total time of 80 min. The space charge density after each annealing step has been extracted from capacitance–voltage measurements. If the starting material is boron-doped p-type high-resistivity Czochralski silicon, the thermal donor generation process can be utilized in order to produce p+/n/n+ detectors. The last thermal process step, i.e. the sintering of aluminum, is intentionally carried out at the temperature where thermal donors are created. According to our results, we have improved the previously reported model of the thermal donor generation.  相似文献   

17.
We report a solution processed, p-doped film consisting of the organic materials 4,4′,4″-tris(3-methylphenylphenylamino)triphenylamine (MTDATA) as the electron donor and 2-(3-(adamantan-1-yl)propyl)-3,5,6-trifluorotetracyanoquinodimethane (F3TCNQ-Adl) as the electron acceptor. UV–vis–NIR absorption spectra identified the presence of a charge transfer complex between the donor and acceptor in the doped films. Field-effect transistors were used to characterize charge transport properties of the films, yielding mobility values. Upon doping, mobility increased and then slightly decreased while carrier concentration increased by two orders of magnitude, which in tandem leads to conductivity increasing from 4 × 10?10 S/cm when undoped to 2 × 10?7 S/cm at 30 mol% F3TCNQ-Adl. The hole density was calculated based on mobility values extracted from OFET data and conductivity values extracted from bulk IV data for the MTDATA: x mol% F3TCNQ-Sdl films. These films were then shown to function as the hole injection/hole transport layer in a phosphorescent blue OLED.  相似文献   

18.
In this work, we present a method to increase the performance in solution processed organic field effect transistors (OFET) by using gel as dielectric and molecular doping to the active organic semiconductor. In order to compare the performance improvement, Poly (methylmethacrylate) (PMMA) and Poly (3-hexylthiophene-2,5-diyl) P3HT material system were used as a reference. Propylene carbonate (PC) is introduced into PMMA to form the gel for using as gate dielectric. The mobility increases from 5.72×10−3 to 0.26 cm2 V s–1 and operation voltage decreases from −60 to −0.8 with gel dielectric. Then, the molecular dopant 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) is introduced into P3HT via co-solution. The mobility increases up to 1.1 cm2 V s–1 and the threshold voltage downs to −0.09 V with doping. The increase in performance is discussed in terms of better charge inducing by high dielectric properties of gel and trap filling due to the increased carrier density in active semiconductor by molecular doping.  相似文献   

19.
Schottky diodes were successfully fabricated on p+ Si for deep-level transient spectroscopy (DLTS) measurements by the use of hydrogen passivation of boron. Atomic hydrogen was introduced into the near-surface region of boron-doped (1 0 0) CZ Si crystals, which had a resistivity of about 0.01 Ω cm, at temperatures between room temperature and 300°C by exposure to a hydrogen plasma. Rectifying characteristics were obtained for fabricated Schottky contacts on hydrogenated samples. This was due to the carrier concentration decrease in the near-surface region by hydrogen passivation of boron. As the hydrogenation temperatures were increased, the decrease in carrier concentration was significant. Some results of DLTS measurements were given for fabricated diodes.  相似文献   

20.
Charge carrier transport under reverse voltage conditions is of major relevance in devices like organic photo-detectors, organic solar cells (tandem cells), organic light emitting diodes (generation contacts), and organic Zener diodes. We present organic pin-diodes comprising molecular doped layers of pentacene and C60 with an adjustable and reversible reverse breakdown behavior. We discuss the electric field and temperature dependence of the breakdown mechanism and propose a coherent charge transport scenario to describe the experimental findings. Within this model a field assisted tunneling of charge carriers over a rather large distance from valence to conductance states (and vice versa) governs the breakdown behavior. This is in accordance to experimental observations where charge carriers can overcome a layer thickness of 110 nm in the breakdown regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号