首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Solid-state electronics》2006,50(7-8):1175-1177
In0.75Ga0.25As channel layers with a record mobility exceeding 12,000 cm2/Vs for use in high-κ dielectric NMOSFETs have been fabricated. The device structures which have been grown by molecular beam epitaxy on 3″ semi-insulating InP substrate comprise a 10 nm strained In0.75Ga0.25As channel layer and a high-κ oxide based dielectric layer (κ  20). Electron mobilities of 12,033 and 7,042 cm2/Vs have been measured for sheet carrier concentrations ns of 2.5 × 1012 and 6 × 1012 cm−2, respectively.  相似文献   

2.
《Solid-state electronics》2006,50(9-10):1584-1587
Electron mobility of gadolinium/europium (dibenzoylmethanato)3(bathophenanthroline) (Gd/Eu(DBM)3 bath) was measured by transient electroluminescence (EL) method. Although electron mobility of the two complexes were expected to be same, the value of mobility (1.2 × 10−4 cm2/Vs at electric field of 1 MV/cm) of Eu(DBM)3 bath complex was bigger than that (8 × 10−5 cm2/Vs at electric field of 1 MV/cm) of Gd(DBM)3 bath complex. It was found to be related to the different luminescent mechanisms of active materials and recombination zones in the devices. According to this, penetration length of hole injected into electron transport layer of Eu(DBM)3 bath was estimated.  相似文献   

3.
The charge transport properties in a novel electroluminescent poly{[2-(4′,5′-bis(3″-methylbutoxy)-2′-p-methoxy-phenyl)phenyl-1,4-phenylene vinylene]-co-(9,9-dioctyl-2,7-fluorenylene vinylene)} (BPPPV-PF) have been studied using a time-of-flight (TOF) photoconductivity technique. The TOF transients for holes were recorded over a range of temperatures (207–300 K) and electric fields (1.5 × 105–6.1 × 105 V/cm). The hole transport in this polymer was weakly dispersive in nature with a mobility at 300 K of 5 × 10−5 cm2/V s at 2.5 × 105 V/cm. This increased to 8.4 × 10−5 cm2/V s at 6.1 × 105 V/cm. The temperature and field dependence of charge mobility has been analyzed using the disorder formalisms (Bässler’s Gaussian disorder model (GDM) and correlated disorder model (CDM)). The fit with Gaussian disorder (GDM) model yielded the mobility pre-factor μ = 1.2 × 10−3 cm2/V s, energetic disorder parameter σ = 82 meV and positional disorder parameter Σ = 1.73. The average inter-site separation (a = 7 Å) and the charge localization length (L = 3.6 Å) was estimated by assuming the CDM type charge transport. The microscopic charge transport parameters derived for this polymer are almost identical to the reported values for fully conjugated polymers with high chemical purity. The results presented indicate that the charge transport parameters can be controlled and optimized for organic optoelectronic applications.  相似文献   

4.
《Microelectronics Reliability》2014,54(11):2401-2405
A high-performance InGaZnO (IGZO) thin-film transistor (TFT) with ZrO2–Al2O3 bilayer gate insulator is fabricated. Compared to IGZO-TFT with ZrO2 single gate insulator, its electrical characteristics are significantly improved, specifically, enhancement of Ion/Ioff ratios by one order of magnitude, increase of the field-effect mobility (from 9.8 to 14 cm2/Vs), reduction of the subthreshold swing from 0.46 to 0.33 V/dec, the maximum density of surface states at the channel-insulator interface decreased from 4.3 × 1012 to 2.5 × 1012 cm2. The performance enhancements are attributed to the suppression of leakage current, smoother surface morphology, and suppression of charge trapping by using Al2O3 films to modify the high-k ZrO2 dielectric.  相似文献   

5.
《Organic Electronics》2014,15(8):1799-1804
Copper phthalocyanine (CuPc)-based thin film transistors were fabricated using CuPc films grown under different deposition pressure (Pdep) (ranging from 1.8 × 10−4 Pa to 1.0 × 10−1 Pa). The transistor performance highly depended on Pdep. A field-effect mobility of 2.1 × 10−2 cm2/(V s) was achieved under 1.0 × 10−1 Pa. Detailed investigations revealed that Pdep modulates the molecular packing and orientation of the organic films grown on a SiO2/Si substrate and influences the charge transport. Furthermore, from a device physics point of view, contact resistance of the fabricated transistors decreased when Pdep increased, which was beneficial in reducing energy consumption.  相似文献   

6.
Charge mobility characteristics of a newly synthesised 2,6-bis[2-(9,9-dihexyl-9H-fluorene)]-N-(4-hexylphenyl)-dithieno[3,2-b:2′,3′-d]pyrrole oligomer (DTP-FLU) was studied as a function of electric field and temperature using time-of-flight photoconductivity measurement. It is found that the DTP-FLU oligomer is a hole transporting material with a hole mobility of 7.7 × 10?6 cm2/Vs at an applied electric field of 2.9 × 105 V/cm at 298 K. The dependence of hole mobility with applied electric field and temperature is studied in detail by analyzing the experimental results using the Bassler’s Gaussian disorder model and Correlated disorder model. The energetic disorder parameter (σ) = 100 meV, mobility pre-factor (μ) = 6.1 × 10?4 cm2/Vs and positional disorder parameter (Σ) = 2.4 were extracted using Gaussian disorder model. The film morphology and photophysical properties of this new oligomer are also studied in detail.  相似文献   

7.
Cu2ZnSnS4 (CZTS) is low cost and constitutes non-toxic materials abundant in the earth crust. Environment friendly solar cell absorber layers were fabricated by a thermal co-evaporation technique. Elemental composition of the film was stated by energy dispersive spectroscopy (EDS). Some optical and electrical properties such as absorption of light, absorption coefficient, optical band gap charge carrier density, sheet resistance and mobility were extracted. Optical band gap was found to be as 1.44 eV, besides, charge carrier density, resistivity and mobility were found as 2.14×1019 cm−3, 8.41×10−4 Ω cm and 3.45×102 cm2 V−1 s−1, respectively. In this study Ag/CZTS/n-Si Schottky diode was fabricated and basic diode parameters including barrier height, ideality factor, and series resistance were concluded using current–voltage and capacitance–voltage measurements. Barrier height and ideality factor values were found from the measurements as 0.81 eV and 4.76, respectively, for Ag/CZTS/n-Si contact.  相似文献   

8.
In this paper, S-doped ZnO (SxZnO) was prepared using sol-gel method at different S amounts. The structural, optical and transport properties were investigated. The introduction of S atoms into the ZnO network was found to lower the crystallization level which results in reducing the crystallite size up to x=0.3. The doping process is confirmed by the observed peak at ~610 cm−1 in the ATR spectrum related to the Zn-S linking. EDX mapping shows a homogeneous distribution of S atoms on the particles surface. The best compromise between the band gap (Eg=2.96 eV), the charge carriers (NA=2.139×1022 cm−3), the conductivity (σ=5.56×10−4 Ω−1 m−1) and the mobility (µ=16.26×10−14 m2 V−1 s−1) is obtained for x=0.1. The conduction mechanism is assumed by small hopping polaron. The S-doping has impacted positively the photocatalytic activity of ZnO, with particularly high performance for S0.2ZnO.  相似文献   

9.
《Microelectronic Engineering》2007,84(9-10):1968-1971
Charge trapping in ultrathin high-k Gd2O3 dielectric leading to appearance of hysteresis in C-V curves is studied by capacitance-voltage and current-voltage techniques. It was shown that the large leakage current at a negative gate voltage causes the generation of the positive charge in the dielectric layer, resulting in the respective shift of the C-V curve. The capture cross-section of the hole traps is around 2 × 10−20 cm2. The distribution of the interface states was measured by conductance technique showing the concentration up to 7.5 × 1012 eV−1 cm−2 near the valence band edge.  相似文献   

10.
Slice-like organic single crystals of 1,4-bis(2-cyano-2-phenylethenyl)benzene (BCPEB) are grown by the physical vapor transport (PVT) method, and exhibit a very high photoluminescence quantum efficiency (ΦPL) of 75%. The ambipolar behavior of BCPEB single crystals are confirmed using the time of flight technique. The high efficiency and balanced (μh = 0.059 cm2/Vs and μe = 0.070 cm2/Vs) carriers’ mobility imply that the BCPEB single crystal is a promising light-emitting layer in the diodes structure. Intense green electroluminescence (EL) from a diode has been successfully demonstrated at an applied electric field of 2 × 105 V/cm.  相似文献   

11.
《Solid-state electronics》2006,50(9-10):1515-1521
Al0.26Ga0.74N/AlN/GaN high-electron-mobility transistor (HEMT) structures with AlN interfacial layers of various thicknesses were grown on 100-mm-diameter sapphire substrates by metalorganic vapor phase epitaxy, and their structural and electrical properties were characterized. A sample with an optimum AlN layer thickness of 1.0 nm showed a highly enhanced Hall mobility (μHall) of 1770 cm2/Vs with a low sheet resistance (ρs) of 365 Ω/sq. (2DEG density ns = 1.0 × 1013/cm2) at room temperature compared with those of a sample without the AlN interfacial layer (μHall = 1287 cm2/Vs, ρs = 539 Ω/sq., and ns = 0.9 × 1013/cm2). Electron transport properties in AlGaN/AlN/GaN structures were theoretically studied, and the calculated results indicated that the insertion of an AlN layer into the AlGaN/GaN heterointerface can significantly enhance the 2DEG mobility due to the reduction of alloy disorder scattering. HEMTs were successfully fabricated and characterized. It was confirmed that AlGaN/AlN/GaN HEMTs with the optimum AlN layer thickness show superior DC properties compared with conventional AlGaN/GaN HEMTs.  相似文献   

12.
Polar polymers (polyfluorene copolymers, PFN–PBT) with different polarities are utilized to modify the surface of tantalum pentoxide (Ta2O5) insulator in n-channel organic thin-film transistors (OTFTs). A high mobility of 0.55 cm2/Vs, high on/off current ratio of 1.7 × 105, and low threshold voltage of 2.8 V are attained for the OTFT with the modification polymers, the performances of which are much better than those of OTFT with only Ta2O5 insulator. The performances of the OTFT with only Ta2O5 insulator are only 0.006 cm2/Vs in mobility, 5 × 103 in on/off ratio, and 12.5 V in threshold voltage. Furthermore, it is found that the threshold voltage of the OTFTs with PFN–PBT modification layer is easily tuned by polarities of the polymers. Further studies show that self-assembly dipole moments in the polymers play an important role in the improvement of the OTFT performances.  相似文献   

13.
Copper indium gallium diselenide (CIGS) films were deposited as an absorber layer on polyethylene terephthalate (PET) substrates by a screen printing technique using CIGS ink with a Ga content ranging from 0.3 to 0.6. The melting point of PET substrate is 254.9 °C; the average transmission in the visible (400 nm–800 nm) for PET substrates is greater than 85%. Effects of Ga content of the CIGS absorber layer on structural and electrical properties of the CIGS films were studied. The lattice parameters, a and c for all CIGS films were decreased with increasing Ga content. At room temperature, Hall mobility and charge-carrier concentration of the CIGS films varies from 97.2 to 2.69 cm2 V−1 s−1 and 9.98×1016 to 3.23×1018 cm−3, respectively.  相似文献   

14.
In this work, the B-doped Si rich oxide (SRO) thin films were deposited and then annealed using rapid thermal annealing (RTA) to form SiO2-matrix silicon nanocrystals (Si NCs). The effects of the RTA temperatures on the structural properties, conduction mechanisms and electrical properties of B-doped SRO thin films (BSF) were investigated systematically using Hall measurements, Fourier transform infrared spectroscopy and Raman spectroscopy. Results showed that the crystalline fraction of annealed BSF increased from 41.3% to 62.8%, the conductivity was increased from 4.48×10−3 S/cm to 0.16 s/cm, the carrier concentration was increased from 8.74×1017 cm−3 to 4.9×1018 cm−3 and the carrier mobility was increased from 0.032 cm2 V−1 s−1 to 0.2 cm2 V−1 s−1 when the RTA temperatures increased from 1050 °C to 1150 °C. In addition, the fluctuation induced tunneling (FIT) theory was applicable to the conduction mechanisms of SiO2-matrix boron-doped Si-NC thin films.  相似文献   

15.
In the paper, SnOx thin films were deposited by reactive magnetron sputtering from a tin target in O2 containing working gas. The evolution from Sn-containing SnO to tetravalent SnO2 films was investigated. The films could be classified into three groups according to their optical band gaps, which are Eg<2.5 eV, Eg=3.0–3.3 eV and Eg>3.7 eV. The electric measurements show that high conductivity can be obtained much easier in SnO2 than in SnO films. A high electron mobility of 15.7 cm2 V−1 s−1, a carrier concentration of 1.43×1020 cm−3 and a resistivity of 2.8×103 Ω cm have been achieved in amorphous SnO2 films. Films with the optical band gap of 3.0–3.3 eV remain amorphous though the substrate temperature is as high as 300 °C, which implies that °btaining high mobility in p-type SnO is more challenging in contrast to n-type SnO2 films.  相似文献   

16.
《Organic Electronics》2014,15(8):1884-1889
Solution-processed n-type organic field effect transistors (OFETs) are in need of proper metal contact for improving injection and mobility, as well as balanced hole mobility for building logic circuit units. We address the two distinct problems by a simple technique of transfer-printing. Transfer-printed Au contacts on a terrylene-based semiconductor (TDI) significantly reduced the inverse subthreshold slope by 5.6 V/dec and enhanced the linear mobility by over 5 times compared to evaporated Au contacts. Hence, devices with a high-work-function metal (Au) are comparable with those with low-work-function metals (Al and Ca), indicating a fundamental advantage of transfer-printed electrodes in electron injection. We also transfer-printed a poly(3-hexylthiophene) (P3HT) layer onto TDI to construct a double-channel ambipolar transistor by a solution process for the first time. The transistor exhibits balanced hole and electron mobility (3.0 × 10−3 and 2.8 × 10−3 cm2 V−1 s−1) even in a coplanar structure with symmetric Au electrodes. The technique is especially useful for reaching intrinsic mobility of new materials, and enables significant enlargement of the material tanks for solution-processed functional heterojunction OFETs.  相似文献   

17.
The influence of high energy electron (HEE) irradiation from a Sr-90 radio-nuclide on n-type Ni/4H–SiC samples of doping density 7.1×1015 cm−3 has been investigated over the temperature range 40–300 K. Current–voltage (I–V), capacitance–voltage (C–V) and deep level transient spectroscopy (DLTS) were used to characterize the devices before and after irradiation at a fluence of 6×1014 electrons-cm−2. For both devices, the I–V characteristics were well described by thermionic emission (TE) in the temperature range 120–300 K, but deviated from TE theory at temperature below 120 K. The current flowing through the interface at a bias of 2.0 V from pure thermionic emission to thermionic field emission within the depletion region with the free carrier concentrations of the devices decreased from 7.8×1015 to 6.8×1015 cm−3 after HEE irradiation. The modified Richardson constants were determined from the Gaussian distribution of the barrier height across the contact and found to be 133 and 163 A cm−2 K−2 for as-deposited and irradiated diodes, respectively. Three new defects with energies 0.22, 0.40 and 0.71 eV appeared after HEE irradiation. Richardson constants were significantly less than the theoretical value which was ascribed to a small active device area.  相似文献   

18.
Fluorine doped tin oxide (FTO) films were fabricated on a glass substrate by a green sol–gel dip-coating process. Non-toxic SnF2 was used as fluorine source to replace toxic HF or NH4F. Effect of SnF2 content, 0–10 mol%, on structure, electrical resistivity, and optical transmittance of the films were investigated using X-ray diffraction, Hall effect measurements, and UV–vis spectra. Structural analysis revealed that the films are polycrystalline with a tetragonal crystal structure. Grain size varies from 43 to 21 nm with increasing fluorine concentration, which in fact critically impacts resultant electrical and optical properties. The 500 °C-annealed FTO film containing 6 mol% SnF2 shows the lowest electrical resistivity 7.0×10−4 Ω cm, carrier concentration 1.1×1021 cm−3, Hall mobility 8.1 cm2V−1 s−1, optical transmittance 90.1% and optical band-gap 3.91 eV. The 6 mol% SnF2 added film has the highest figure of merit 2.43×10−2 Ω−1 which is four times higher than that of un-doped FTO films. Because of the promising electrical and optical properties, F-doped thin films prepared by this green process are well-suited for use in all aspects of transparent conducting oxide.  相似文献   

19.
FeS2 thin films were grown on a glass substrate using a physical vapor deposition technique at room temperature. Subsequently, the thin films were annealed in two different atmospheres: vacuum and vacuum-sulfur. In the vacuum-sulfur atmosphere a graphite box was used as sulfur container and the films were sulfurated successfully at 200–350 ºC. It was found that annealing in a vacuum-sulfur atmosphere was indispensable in order to obtain polycrystalline FeS2 thin films. The polycrystalline nature and pure phase were determined by XRD and Raman techniques and the electrical properties by the Hall effect. Using the sulfurating technique, the n-type semiconductor was prepared at 200–350 °C and a p-type at 500 °C. The carrier concentrations were between 1.19×1020 and 2.1×1020 cm−3. The mobility was 9.96–5.25 cm2 V−1 s−1 and the resistivity was 6.31×10−2 to 1.089×10−2 Ω cm. The results obtained from EDS showed that the films prepared in the vacuum-sulfur atmosphere were close to stoichiometric and that the indirect band gap varied between 1.03 and 0.945 eV.  相似文献   

20.
The DC and microwave characteristics of Lg = 50 nm T-gate InAlN/AlN/GaN High Electron Mobility Transistor (HEMT) on SiC substrate with heavily doped n+ GaN source and drain regions have demonstrated using Synopsys TCAD tool. The proposed device features an AlN spacer layer, AlGaN back-barrier and SiN surface passivation. The proposed HEMT exhibits a maximum drain current density of 1.8 A/mm, peak transconductance (gm) of 650 mS/mm and ft/fmax of 118/210 GHz. At room temperature, the measured carrier mobility, sheet charge carrier density (ns) and breakdown voltage are 1195 cm2/Vs, 1.6 × 1013 cm−2 and 18 V respectively. The superlatives of the proposed HEMTs are bewitching competitor for future monolithic microwave integrated circuits (MMIC) applications particularly in W-band (75–110 GHz) high power RF applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号