首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 459 毫秒
1.
对中冷后回热式布雷顿-逆布雷顿联合循环构型进行有限时间热力学分析和优化,推导出了燃料燃烧放热流率、循环净功率、循环热效率和各个部件由于流动不可逆性产生的压力损失与顶循环压气机进口相对压力损失的函数关系。给出了循环净功率的分析和优化结果,以及在燃油消耗和尺寸约束条件下循环热效率的分析和优化结果。通过数值计算,详细分析了各主要设计参数对循环最优性能的影响。研究发现,存在最佳的中冷压比、压气机1进口相对压力损失、压气机3的压比和总压比,使循环功率获得最优值;在燃油消耗和装置尺寸的约束下,存在最佳的中冷压比、压气机1进口相对压力损失和总压比,使循环效率获得最优值;中冷过程能有效提高循环的功率,回热对循环功率影响很小。  相似文献   

2.
应用有限时间热力学理论和方法(FTT)建立了闭式不可逆回热布雷顿热电冷联产(CCHP)装置模型,导出了装置无量纲可用能率、火用输出率、利润率、第一定律效率和火用效率的解析式。通过数值计算得到了各个性能指标与压比的关系,优化了压比。分析了设计参数对最优性能的影响,发现回热能够显著增大第一定律效率和火用效率;增大压气机和透平效率、压力恢复系数能够增大5个性能指标,但前者使相应压比增大,后者使相应压比减小;增大热电比能够显著增大可用能率和第一定律效率;分别存在最佳的供热温度使5个最优性能指标取得最大值;提高冷库温度能增大可用能率和第一定律效率,但会降低火用输出率、火用效率和利润率。  相似文献   

3.
考虑实际动力装置的尺寸约束,基于有限时间热力学的思想建立了具有压降不可逆性的开式双轴燃气轮机循环模型。在该模型中,工质沿途有八种流阻。这些流动阻力均为模型入口相对压降的函数,控制着循环输出功率等性能参数。导出的性能参数的函数表明,通过改变质量流率(或沿通流路径压力损失)可以使开式双轴燃气轮机循环的热力学性能最优。结果表明,循环最大输出功率对应一个最佳的质量流率(或沿通流路径压力损失),如此也可以确定一个压气机压比的附加最大值。在燃油消耗和装置总尺寸约束条件下,对模型入口和出口之间的流通面积进行优化分配,可以进一步优化循环功率效率。  相似文献   

4.
开式微型燃气轮机外燃循环的功率和效率优化   总被引:1,自引:1,他引:0  
考虑实际动力装置的尺寸约束,基于有限时间热力学的思想建立了具有压降不可逆性的开式微型燃气轮机外燃循环模型。在该模型中,工质在流动过程中将依次遭遇8种流动阻力。这些流动阻力均为压气机入口相对压降的函数,并且控制着质量流率和循环输出功率。导出的循环输出功率、效率及其它的一些参数的表达式表明,调整质量流率可以优化开式微型燃气轮机外燃循环的热力学性能。分析表明,存在最佳的质量流率使循环输出功率最大,该最大功率对应于压气机压比存在附加最大值。给定动力装置燃油消耗和总尺寸的情况下,通过合理分配压气机入口和涡轮机出口之间的流通面积,可以进一步使循环功率效率最大化。  相似文献   

5.
应用有限时间热力学理论和方法建立了闭式内可逆回热布雷顿热电冷联产装置模型,导出了装置无量纲(火用)输出率和效率的解析式。通过数值计算分析了回热器热导率对(火用)输出率和(火用)效率的影响,发现存在临界压比,同时优化了压比,研究了热电比、制冷和供热温度等设计参数对最优(火用)输出率和(火用)效率以及相应最佳压比的影响,发现最优(火用)输出率时的设计压比要大于最优(火用)效率时的设计压比,最优(火用)输出率和(火用)效率均随冷用户温度的升高而减小,分别存在最佳的热用户温度使(火用)输出率和(火用)效率取得最大值,热用户温度对装置最优(火用)性能的影响比冷用户温度更为明显。  相似文献   

6.
建立了恒温热源内可逆中冷回热布雷顿热电联产装置模型,基于火用分析的观点,用有限时间热力学理论和方法研究了装置的性能,导出了无量纲火用输出率和火用效率的解析式。讨论了总压比给定和总压比变化两种情形,优化了中间压比和总压比,通过数值计算分析了回热度、中冷度和高温侧热源温度与环境温度之比等参数对装置一般性能和最优性能的影响,研究了火用输出率和火用效率之间的关系,其特性关系为扭叶型。最后发现分别存在最佳的用户侧温度使火用输出率和火用效率取得双重最大值。  相似文献   

7.
建立了考虑变温热源的闭式中冷回热(ICR)燃气轮机循环有限时间热力学(FTT)模型,导出了循环利润率和效率解析式,优化各换热器热导率分配和中冷压比,得到了最大利润率;进一步优化总压比,得到双重最大利润率;并分析了总热导率等重要设计参数对循环最优性能的影响。结果表明,随着高低温侧热源进口温比、低压压气机效率、高压压气机效率、涡轮效率、各换热器有效度以及压力恢复系数的增大,循环最大利润率和对应的功率和效率增大。随着价格比的增大,循环利润率增大,但对应的效率却有所减小。存在一个最佳的工质与热源热容率匹配值使变温热源闭式不可逆中冷回热燃气轮机循环的利润率取得三重最大值。  相似文献   

8.
采用有限时间热力学的思想,建立了高炉余能余热驱动的变温热源不可逆中冷回热(ICR)布雷顿热电联产(CHP)装置模型.以(火用)输出率和炯效率为目标优化了装置的性能,发现回热器对炯性能的影响在所有换热器中是最小的,当给定回热器热导率分配时,分别存在两个最佳的中间压比和两组最佳的高、低温侧和热用户侧换热器以及中冷器的热导率分配使炯输出率和炯效率取得最大值.进一步优化总压比,得到了双重最大(火用)输出率和炯效率.增大高炉余热源入口温度、压力恢复系数、压气机和涡轮机效率有利于提高装置的炯性能,在一定范围内,热用户温度越高越好.最后发现分别存在最佳的工质与热源间的热容率匹配使(火用)输出率和(火用)效率取得三重最大值.  相似文献   

9.
用有限时间热力学理论研究恒温热源条件下由一个内可逆闭式布雷顿热机循环和一个内可逆四热源吸收式制冷循环组成的高炉余能余热驱动的热电冷联产装置的火用经济性能,导出热电冷联产装置的利润率和火用效率与压气机压比的关系。利用数值计算,分析热电比和吸收式制冷循环总放热量在吸收器和冷凝器之间的分配率对利润率与火用效率关系的影响,并研究联产装置各种参数对最大利润率及相应火用效率特性的影响。  相似文献   

10.
用有限时间热力学理论和方法研究了恒温热源不可逆中冷回热布雷顿热电联产装置的火用经济性能,导出了无量纲利润率和火用效率的解析式.以利润率和火用效率为目标,通过数值计算对热导率的分配、中间压比的选取进行了优化.得到了最大利润率和火用效率.进一步对总压比进行优化,得到了双重最大利润率,但火用效率不存在双重最大值.详细分析了设...  相似文献   

11.
The principle of optimally tuning the air flow rate and subsequent distribution of pressure drops is applied to optimize the performance of a thermodynamic model for an open regenerative cycle of an externally fired micro gas turbine power plant with pressure drop irreversibilities by using finite-time thermodynamics and considering the size constraints of the real plant. There are eight flow resistances encountered by the working fluid stream for the cycle model. Two of these, the friction through the blades and vanes of the compressor and the turbine, are related to the isentropic efficiencies. The remaining flow resistances are always present because of the changes in flow cross-section at the compressor inlet and outlet, the turbine inlet and outlet and the regenerator hot/cold-side inlet and outlet. These resistances associated with the flow through various cross-sectional areas are derived as functions of the compressor inlet relative pressure drop, and control the air flow rate and the net power output and thermal efficiency. The analytical formulae for the power output, efficiency and other coefficients are derived, which indicate that the thermodynamic performance for an open regenerative cycle of an externally fired micro gas turbine power plant can be optimized by adjusting the mass flow rate (or the distribution of pressure losses along the flow path). It is shown that there are optimal air mass flow rates (or the distribution of pressure losses along the flow path) which maximize the net power output.  相似文献   

12.
A thermodynamic model for open combined Brayton and inverse Brayton cycles is established considering the pressure drops of the working fluid along the flow processes and the size constraints of the real power plant using finite time thermodynamics in this paper. There are 11 flow resistances encountered by the gas stream for the combined Brayton and inverse Brayton cycles. Four of these, the friction through the blades and vanes of the compressors and the turbines, are related to the isentropic efficiencies. The remaining flow resistances are always present because of the changes in flow cross-section at the compressor inlet of the top cycle, combustion inlet and outlet, turbine outlet of the top cycle, turbine outlet of the bottom cycle, heat exchanger inlet, and compressor inlet of the bottom cycle. These resistances control the air flow rate and the net power output. The relative pressure drops associated with the flow through various cross-sectional areas are derived as functions of the compressor inlet relative pressure drop of the top cycle. The analytical formulae about the relations between power output, thermal conversion efficiency, and the compressor pressure ratio of the top cycle are derived with the 11 pressure drop losses in the intake, compression, combustion, expansion, and flow process in the piping, the heat transfer loss to the ambient, the irreversible compression and expansion losses in the compressors and the turbines, and the irreversible combustion loss in the combustion chamber. The performance of the model cycle is optimized by adjusting the compressor inlet pressure of the bottom cycle, the air mass flow rate and the distribution of pressure losses along the flow path. It is shown that the power output has a maximum with respect to the compressor inlet pressure of the bottom cycle, the air mass flow rate or any of the overall pressure drops, and the maximized power output has an additional maximum with respect to the compressor pressure ratio of the top cycle. When the optimization is performed with the constraints of a fixed fuel flow rate and the power plant size, the power output and efficiency can be maximized again by properly allocating the fixed overall flow area among the compressor inlet of the top cycle and the turbine outlet of the bottom cycle.  相似文献   

13.
The present study deals with a comprehensive thermodynamic modeling of a combined heat and power (CHP) system in a paper mill, which provides 50 MW of electric power and 100 ton h?1 saturated steam at 13 bars. This CHP plant is composed of air compressor, combustion chamber (CC), Air Preheater, Gas Turbine (GT) and a Heat Recovery Heat Exchanger. The design parameters of this cycle are compressor pressure ratio (rAC), compressor isentropic efficiency (ηAC), GT isentropic efficiency (ηGT), CC inlet temperature (T3), and turbine inlet temperature (T4). In the multi‐objective optimization three objective functions, including CHP exergy efficiency, total cost rate of the system products, and CO2 emission of the whole plant, are considered. The exergoenvironmental objective function is minimized whereas power plant exergy efficiency is maximized using a Genetic algorithm. To have a good insight into this study, a sensitivity analysis of the results to the interest rate as well as fuel cost is performed. The results show that at the lower exergetic efficiency, in which the weight of exergoenvironmental objective is higher, the sensitivity of the optimal solutions to the fuel cost is much higher than the location of the Pareto Frontier with the lower weight of exergoenvironmental objective. In addition, with increasing exergy efficiency, the purchase cost of equipment in the plant is increased as the cost rate of the plant increases. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper energy, exergy and thermoeconomic analysis of a combined cooling, heating and power (CCHP) system has been performed. Applying the first and second laws of thermodynamics and economic analysis, simultaneously, has made a powerful tool for the analysis of energy systems such as CCHP systems. The system integrates air compressor, combustion chamber, gas turbine, dual pressure heat recovery steam generator (HRSG) and absorption chiller to produce cooling, heating and power. In fact, the first and second laws of thermodynamics are combined with thermoeconomic approaches. Next, computational analysis is performed to investigate the effects of below items on the fuel consumption, values of cooling, heating and net power output, the first and second laws efficiencies, exergy destruction in each of the components and total cost of the system. These items include the following: air compressor pressure ratio, turbine inlet temperature, pinch temperatures in dual pressure HRSG, pressure of steam that enters the generator of absorption chiller and process steam pressure. Decision makers may find the methodology explained in this paper very useful for comparison and selection of CCHP systems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
应用有限时间热力学方法,研究了恒温热源条件下实际回热式布雷顿热电联产装置的火用经济性能,导出了利润率及烟效率解析式。利用数值计算方法,以利润率为目标,对热导率的分配和压比的选取进行了优化,研究了最优利润率及相应火用效率特性,并分析了各种联产设计参数对联产优化性能的影响。  相似文献   

16.
There are many works on improving the performance of a cogeneration plant such as the implementation of a recuperator. In previous works, the authors modelled a gas turbine cycle considering the recuperator as a black box. In this paper, a cogeneration plant is modeled and optimized with details of recuperator parameters. For this purpose, 13 design variables for a plant as well as a recuperator are selected. Then, a genetic algorithm is applied to optimize exergy efficiency and total cost rate, simultaneously. This work included Energy, Economy, and Environmental factors which with Exergy provided 4E analysis. A 36% decrease in total cost and a 33% increase in exergy efficiency in comparison with a simple gas turbine system were found. The above results for a gas turbine with a preheater and inlet cooling system reveal a 36% decrease in total cost and 35% increases in exergy efficiency. In addition, the optimum recuperator design parameters reveal that, higher effectiveness is more important than the investment cost. Moreover, a plant with higher exergy efficiency needs a recuperator with a lower pressure drop. Finally sensitivity analysis for variation of objectives functions with a change in fuel cost and interest rate are performed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号