首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
综述了高导热AIN陶瓷材料的制备技术及应用进展,指出了高导热AIN陶瓷材料制备工艺及其应用中存在的一些问题和其发展动向。  相似文献   

2.
The present work indicates through thermodynamic considerations that YLiO2 additive is beneficial for low-temperature sintering of AlN ceramics. Pressureless sintering of commercially available AIN powders with simultaneous additions of YLiO2 and CaO resulted in materials with high thermal conductivity (170 W·m–1·K–1 after sintering at 1600°C for 6 h). It is demonstrated that improvement of thermal conductivity is possible at low firing temperature by use of sintering aids.  相似文献   

3.
The effect of the morphology of second phases in sintered microstructure on the thermal conductivity of AIN ceramics was investigated. When an Y2O3-doped AIN specimen was cooled down slowly at a rate of 3°C/min after sintering at 1850° or 1900°C, the second phases were concentrated in the corners of the AIN grains by an increase of dihedral angle during cooling. On the other hand, the fast-cooled specimen at a rate of 60°C/min showed a different structure of the second phases interconnected through the triple-grain junctions. The specimen with isolated second-phase morphology showed a higher thermal conductivity than those with interconnected second-phase morphology. The measured thermal conductivity of the specimens with different morphologies of the second phases agreed well with the calculated one derived from modeled microstructures. From the comparison of the measured and calculated thermal conductivity, it was shown that the thermal conductivity of the specimen with interconnected second-phase morphology decreased steeply with an increase of the amount of the second phases, assuming the content of lattice oxygen to be constant. However, the thermal conductivity of the specimen with isolated second-phase morphology was rather insensitive to an increase of the amount of the second phases.  相似文献   

4.
Polycrystalline AIN bodies were made with a range of porosities from various AIN powders by sintering or hot-pressing. Thermal conductivity data for material produced without sintering aids showed a gradual, yet definite, porosity dependence with scatter similar to other property-porosity studies. The thermal conductivity-porosity data for ALN with sintering aids showed the existence of two distinct regions: (1) a higher-porosity region (greater than approximately 2%) which was similar to the data for material without sintering aids, and (2) a low-porosity region where grain boundaries were seen to dominate thermal conductivity. Auger spectroscopy was used to investigate fracture surfaces for dense CaO-doped materials. Thermal conductivity was observed to correlate to effective grain-boundary thickness, which was calculated from quantitative analysis of the Auger data. A model consisting of cubic grains in a continuous grain-boundary phase accurately describes these data.  相似文献   

5.
崔珊  王芬 《陶瓷》2010,(8):7-10
以自蔓延高温合成的AIN粉体为原料,Y2O3、Dy2O3、La2O3为添加剂,采用真空热压烧结工艺,实现了含有添加剂的AIN陶瓷体的低温烧结;研究了烧结温度对AIN烧结性能的影响。用XRD、SEM对AIN高压烧结体进行了表征。研究表明:粉体粒径、烧结工艺、烧结助剂对AIN陶瓷低温烧结真空热压烧结性能有很大影响;含烧结助剂的真空热压烧结能够有效降低AIN陶瓷的烧结温度并缩短烧结时间,使烧结体的结构致密。烧结温度1550℃条件下,真空热压烧结90min时,得到的AIN陶瓷的致密度最高。  相似文献   

6.
This study investigates the thermal and electrical properties of SiC ceramics with a combination of Y2O3 and rare-earth-oxide additions as sintering additives, by comparing four types of SiC starting powders varying in particle size and chemical composition. The powder mixtures were plasma-activation sintered to full densities and then annealed at high temperatures for grain growth. The thermal conductivity and electrical resistivity of the SiC ceramics were measured at room temperature by a laser-flash technique and a current–voltage method, respectively. The results indicate that the thermal conductivity and electrical resistivity of the SiC ceramics are dependent on the chemical composition and particle size of the starting powders. The thermal conductivities observed for all of the annealed materials with a rare-earth La2O3 sintering additive were >160 W·(m·K)−1, although low electrical resistivity was observed for all materials, in the range 3.4–450 Ω·cm. High thermal conductivity, up to 242 W·(m·K)−1, was achieved in an annealed material using a commercial 270 nm SiC starting powder.  相似文献   

7.
Effect of CaO on the Thermal Conductivity of Aluminum Nitride   总被引:3,自引:0,他引:3  
The effect of CaO on the thermal conductivity of aluminum nitride pressureless sintered with 3 wt% Y2O3 as a sintering aid was investigated. Over the composition range of 0 to 2.0 wt% additions, CaO decreased the thermal conductivity of the sintered parts by 10%. CaO doping rendered the secondary oxide phases more wetting and thus with a greater tendency to penetrate along the grain boundaries. Furthermore, CaO segregation to the grain boundaries was observed even on those grain boundaries apparently free of secondary phases. These microstructural changes disrupted the connectivity of the high thermal conductivity AIN grains and were the main factors contributing to the decrease in the thermal conductivity of the ceramic parts. CaO additions to samples doped with SiO2 had the opposite effect, increasing the thermal conductivity. CaO removed SiO2 from the AIN grains and incorporated it into the oxide second phases, most likely through charge-compensating substitutions Ca2++ Si4+ for Y3+ and/or Al3+. Thus, AIN samples containing both SiO2 and CaO had higher thermal conductivity than those containing comparable amounts of SiO2 alone.  相似文献   

8.
Silica-bonded porous nano-SiC ceramics with extremely low thermal conductivity were prepared by sintering nano-SiC powder-carbon black template compacts at 600–1200 °C for 2 h in air. The microstructure of the silica-bonded porous nano-SiC ceramics consisted of SiC core/silica shell particles, a silica bonding phase, and hierarchical (meso/macro) pores. The porosity and thermal conductivity of the silica-bonded porous nano-SiC ceramics can be controlled in the ranges of 8.5–70.2 % and 0.057–2.575 Wm−1 K−1, respectively, by adjusting both, the sintering temperature and template content. Silica-bonded porous nano-SiC ceramics with extremely low thermal conductivity (0.057 Wm−1 K−1) were developed at a very low processing temperature (600 °C). The typical porosity, average pore size, compressive strength, and specific compressive strength of the porous nano-SiC ceramics were ∼70 %, 50 nm, 2.5 MPa, and 2.7 MPa·cm3/g, respectively. The silica-bonded porous nano-SiC ceramics were thermally stable up to 1000 °C in both air and argon atmospheres.  相似文献   

9.
The effect of SiO2 on the thermal conductivity of aluminum nitride pressureless sintered with 3 wt% Y2O3 as a sintering aid was investigated. SiO2 additions greatly decreased the thermal conductivity of the sintered parts from values of around 160 W/m·K on undoped samples to about 25 W/m·K with 5 wt% SiO2 added to the green body composition. Microstructural studies, combined with the temperature dependence of the thermal conductivity and lattice parameter measurements, indicated that defect phonon scattering was the mechanism responsible for the decrease in thermal conductivity. SiO2 can be incorporated in limited solid solution into the AIN lattice, generating AI vacancies for charge compensation in a process not unlike the solution of oxygen in AIN. The mass difference introduced by the vacancies is the main phonon scattering defect. Beyond a concentration threshold of 2%, the SiO2-induced defects cluster to form SiAION polytypoids derived from the basic 2H AIN structure with stacking sequences that depend on the SiO2 levels in the sample.  相似文献   

10.
稀土氧化物对氮化铝瓷介电性能的影响(英文)   总被引:1,自引:0,他引:1  
研究了添加Nd2O3和Er2O3对氮化铝陶瓷烧结性能、介电性能和显微结构的影响。结果表明:在氮化铝瓷中添加Nd2O3和Er2O3,有利于降低氮化铝陶瓷烧结温度,提高致密性,并且介电性能能够得到显著改善。添加3%(质量分数)Er2O3的AlN陶瓷的相对密度达98.8%,介电损耗为1.3×10-4,是纯AlN陶瓷的5%。其显微结构分析表明,氮化铝晶粒尺寸更均匀,并且其晶格参数更接近理论值,晶界相较少,从而使得其介电性能得到较大改善。  相似文献   

11.
Excessive sintering shrinkage leads to severe deformation and cracking, affecting the microstructure and properties of porous ceramics. Therefore, reducing sintering shrinkage and achieving near-net-size forming is one of the effective ways to prepare high-performance porous ceramics. Herein, low-shrinkage porous mullite ceramics were prepared by foam-gelcasting using kyanite as raw material and aluminum fluoride (AlF3) as additive, through volume expansion from phase transition and gas generated from the reaction. The effects of AlF3 content on the shrinkage, porosity, compressive strength, and thermal conductivity of mullite-based porous ceramics were investigated. The results showed that with the increase of content, the sintering shrinkage decreased, the porosity increased, and mullite whiskers were produced. Porous mullite ceramics with 30 wt% AlF3 content exhibited a whisker structure with the lowest shrinkage of 3.5%, porosity of 85.2%, compressive strength of 3.06 ± 0.51 MPa, and thermal conductivity of 0.23 W/(m·K) at room temperature. The temperature difference between the front and back sides of the sample reached 710°C under high temperature fire resistance test. The low sintering shrinkage preparation process effectively reduces the subsequent processing cost, which is significant for the preparation of high-performance porous ceramics.  相似文献   

12.
晶界第二相是AIN陶瓷显微结构的重要组成部分,对AIN陶瓷的热导率有重大的影响。本工作研究了以Y_2O_3为烧结助剂的无压烧结AIN陶瓷中,晶界第二相的组成、含量及其分布,结果表明:晶界第二相的组成主要取决于配料中的Y_2O_3/Al_2O_3比值,同时也受工艺因素影响;随着Y_2O_3加入量增多,晶界第二相含量呈线性增加,其分布也变成从三个晶粒连接处延伸到所有晶界。还讨论了晶界第二相对热导率的影响。认为只要AIN晶格完整无缺,AIN相保持连通,即使存在少量的Y_4Al_2O_9和/或Y_2O_3第二相材料,预期仍可获得高的热导率。  相似文献   

13.
In this study, dense SiC ceramics were fabricated at 1650?1750 °C for 10?60 min by spark plasma sintering (SPS) using 3?10 wt.% Al2O3-Y2O3 as sintering additives. Effects of sintering temperature, sintering additive content and holding time on microstructure as well as correlations between microstructure and thermal conductivity were investigated. An increase in the sintering temperature promotes grain growth. Extending holding time has little influence on grain size but results in formation of continuous network of sintering additive, which increases interfacial thermal resistance and thus decreases thermal conductivity. For SiC ceramics composed of continuous SiC matrix and discrete secondary phase (yttrium aluminum garnet, YAG), an increase in the sintering additive content results in smaller grain size and lower thermal conductivity. The lower thermal conductivity of the SiC ceramic with higher sintering additive content is mainly due to the smaller grain size rather than the low intrinsic thermal conductivity of YAG.  相似文献   

14.
An indirect method to determine the oxygen dissolved in AIN is devised for AIN(Y2O3) ceramics and then related to thermal conductivity. Dissolved oxygen is determined by first constructing the AIN-rich corner of the AIN—Y2O3—Al2O3 phase diagram (isothermal section). This is achieved by (1) measuring the total oxygen content and subtracting from it the oxygen in the Y2O3, resulting in a virtual alumina content; (2) placing the sample composition on the diagram; (3) determining the phases present by XRD for each sample; and (4) drawing phase boundaries which best agree with the phases present. The intersection of these tie lines through the sample location with the AIN—Al2O3 axis then gives the particular Al2O3 oxygen content dissolved in the AIN lattice. For the system AIN—Y2O3—Al2O3, it is shown that it is indeed this fraction of the total oxygen content that has a decisive limiting influence on thermal conductivity of dense, polyphase AIN ceramics.  相似文献   

15.
以Er2O3-Mg2Si-Yb2O3为三元复合烧结助剂,制备了力学性能优异的高导热氮化硅陶瓷,研究了Er2O3-Mg2Si-Yb2O3体系对氮化硅陶瓷致密化、微观结构、力学性能、热导率的影响。研究表明,当添加5%(质量分数,下同)Er2O3+2%Mg2Si+4%Yb2O3烧结助剂时,烧结助剂对氮化硅陶瓷致密度与晶界相含量的平衡效果最佳,此时氮化硅陶瓷具有最佳性能:抗弯强度为765 MPa,断裂韧性为7.2 MPa·m1/2,热导率为67 W/(m·K)。在烧结过程中,只添加5%Er2O3+2%Mg2Si的烧结助剂产生的液相量少且黏度高,不能使氮化硅陶瓷完成致密化;此外,当添加的Yb2O3含量超过4%时,烧结助剂产生大量的晶界相,降低了氮化硅陶瓷的性能。  相似文献   

16.
The effects of two-step sintering on the microstructure, mechanical and thermal properties of aluminum nitride ceramics with Yb2O3 and YbF3 additives were investigated. AlN samples prepared using different sintering methods achieved almost full density with the addition of Yb2O3–YbF3. Compared with the one-step sintering, the grain sizes of AlN ceramics prepared by the two-step sintering were limited, and the higher flexural strength and the larger thermal conductivity were obtained. Moreover, the electrochemical impedance spectroscopy of AlN ceramic was associated with thermal conductivity by analyzing the defects and impurities in AlN ceramics. The fitting grain resistance and the activation energy for the grain revealed the lower concentrations of aluminum vacancy in the two-step sintered AlN ceramics, which resulted in the higher thermal conductivity. Thus, mechanical and thermal properties for AlN ceramics were improved with Yb2O3 and YbF3 additives sintered using two-step regimes.  相似文献   

17.
Porous mullite matrix ceramics have excellent thermal and mechanical properties suitable for applications such as in thermal insulation. However, their applications are limited by processing defects from nonuniform sintering shrinkage and the trade-off between high porosity (preferred for low thermal conductivity) and high mechanical strength. Herein, we seek to minimize the sintering shrinkage by near-net-size preparation and improve the strength by in situ formed whisker network structure. Gelcasting forming technology and pressureless sintering were used to prepare porous mullite matrix ceramics using kyanite and α-Al2O3 powders as the starting materials and using MoO3 to promote the growth of mullite whiskers. The results showed that the sintering shrinkage could be compensated by the volume expansion from solid-state reaction during reaction sintering. The in situ formed three-dimensional (3D) whisker network further reduced sintering shrinkage and effectively improved the strength of the ceramics. An ultralow sintering shrinkage of .78% was achieved. The near-net-shape porous mullite matrix ceramics strengthened by 3D whisker network had a high porosity of 63.9%, a high compressive strength of 83.8 MPa and a high flexural strength of 53.5 MPa.  相似文献   

18.
α-SiAlON ceramics with different stabilizing ions of Yb, Dy, Nd, Y, Ca, and binary stabilizing ions of (Yb + Ca) and (Yb + Nd) were prepared by spark plasma sintering at 1600°C and gas pressure sintering at 1800 and 1900°C, and their thermal conductivity was investigated. It was found that α-SiAlON ceramics with larger and heavier stabilizing ions had lower thermal conductivity and the thermal conductivity could be further reduced by using binary stabilizing ions, which can be explained by phonon scattering from point defects. At the same time, the samples prepared at lower sintering temperatures showed smaller grain sizes and lower thermal conductivity. The relationship between the thermal diffusivity of samples and temperature was studied, where the dependence of inverse thermal diffusivity on temperature was better fitted by a quadratic fitting function than the usual linear one over a wide temperature range from 25 to 800°C.  相似文献   

19.
玻璃/陶瓷低温共烧复合材料具有高导热性、快速电子信号传输性能、热膨胀系数与硅匹配、力学性能良好等优点,被广泛应用作电子基板材料。本文简要阐述了玻璃/陶瓷复合材料的烧结机理和影响因素,综述了主要的制备方法,指出了烧结过程中可能存在的关键问题,并讨论了玻璃/陶瓷复合材料的性能调控方法。最后,展望了玻璃/陶瓷复合材料在电子信息领域的发展方向和应用前景。  相似文献   

20.
The secondary phase constitution in two sintered AIN ceramics (1.8% and 4.2% Y2O3 additions) was studied as a function of heat treatment temperatures between 1750° and 1900°C under pure nitrogen atmosphere. The effect of the phase constitution on the physical properties, such as density, thermal conductivity ( K ), and lattice constants, and on the mechanical properties in three-point bending, was also investigated. Y3Al5O12 was found to getter dissolved oxygen from the AIN lattice below 1850°C, but evaporated at 1850°C and above. Y4Al2O9 appeared to sublimate below 1850°C in the atmosphere used in this study. Depending on the secondary phase constitution, heat treatment affected thermal conductivity favorably or adversely. Occasionally, samples with similar lattice oxygen contents were found to have different thermal conductivities, suggesting that factors besides dissolved oxygen can also influence K . Lattice parameter measurements indicated that, within the small range of lattice oxygen concentrations in the AIN samples studied, the c-axis was more sensitive than the a -axis to oxygen content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号