首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 26 毫秒
1.
研制了一款采用0.25μm GaN功率MMIC工艺研制的X波段高效率功率放大器芯片。芯片采用三级放大拓扑结构设计。末级匹配电路采用电抗匹配方式兼顾输出功率和效率,同时优化驱动级和末级管芯栅宽比以及级间匹配电路,降低驱动级管芯电流。通过这两种技术途径有效提高芯片的功率附加效率。输入级和级间匹配电路采用有耗匹配方式,扩展工作带宽以及提高稳定性。芯片在8~12GHz频带范围内漏压28V,脉宽100μS,占空比10%工作条件下输出功率达到47.5~48.7dBm,功率增益大于20dB,功率附加效率40%~45%。芯片面积3.5mm×3.8mm,单位面积功率密度为5.57 W/mm2,连续波条件下热阻为1.7K/W。  相似文献   

2.
L波段GaN大功率高效率准单片功率放大器   总被引:1,自引:0,他引:1  
研制了一款基于NEDI 0.25μm GaN功率MMIC工艺的L波段大功率高效率准单片功率放大器。采用两级拓扑结构,以准单片形式实现。输入采用有耗匹配网络提高芯片的稳定性,级间和末级匹配均采用无耗纯电抗网络,其中末级匹配电路通过低损耗陶瓷电路实现。合理规划前级与末级间推动比,降低前级漏电流,减小末级匹配损耗,优化谐波匹配,实现大功率高效率设计。芯片在28V脉冲电压下工作,在1.2~1.4GHz范围内,实测输出功率大于49dBm,功率增益大于25dB,功率附加效率达到73%。管芯部分及输入匹配电路采用GaN功率MMIC工艺制作,输出匹配电路采用低损耗陶瓷片介质加工,两块电路键合一起总面积8.0mm×5.6mm。  相似文献   

3.
通过负载牵引测试验证了源端二次谐波对器件效率的影响,同时又进一步验证了输出谐波匹配对放大器的作用。基于此结果,研制了两款采用0.25μm工艺的GaN功率MMIC 4.0~5.6GHz高效率放大器芯片,芯片采用二级放大的结构。第一款输出级只考虑基波的匹配;第二款输出级匹配电路兼顾二次和三次谐波进行匹配。两款的末前级均考虑二次谐波的匹配,同时级间优化推动比,进一步提高效率。输入级和级间匹配电路采用有耗匹配,提高稳定性。芯片在4.0~5.6 GHz范围内漏压28 V,脉宽100μs,占空比10%条件下输出功率41dBm,功率增益20~21dB,功率附加效率分别在48%和45%以上。芯片面积3.9mm×3.3mm。  相似文献   

4.
报道了一款采用0.25μm GaN功率MMIC工艺研制的0.1~2.0 GHz超宽带功率放大器芯片。芯片采用非均匀分布式拓扑结构进行设计。在管芯栅极端设计稳定结构来提高电路的整体稳定性,在漏极端采用阻抗渐变的方式进行电路匹配,从而提高电路的效率。芯片漏压30 V、连续波条件下,在0.1~2.0 GHz频率范围内,线性增益大于18 d B,功率增益大于13 d B;在0.1~1.5 GHz频率范围内饱和输出功率大于10 W,功率附加效率大于55%,最高效率达到78%。芯片面积2.4 mm×1.9 mm。  相似文献   

5.
采用多级射频放大电路以及高压脉冲调制技术,实现了S波段高增益小型化200 W功率模块的研制。驱动放大电路采用GaAs功率单片进行功率合成;末级放大电路依托栅长(0.5 μm) GaN高电子迁移率晶体管(HEMT)芯片,选取多子胞结构来改善热分布,通过内匹配技术设计完成了双胞总栅宽24 mm GaN芯片的匹配网络,并设计高压脉冲调制电路提供电源,成功研制出了小型化的S波段200 W内匹配GaN功率模块。测试得出该模块实现了在输入功率10 dBm,栅极电压-5 V,漏极电压32 V,TTL调制信号输入条件下,输出频率在3.1~3.5 GHz处,输出功率大于200 W,功率附加效率(PAE)大于55%。模块实际尺寸为2.4 mm×38 mm×5.5 mm。  相似文献   

6.
报告了一个两级 C-波段功率单片电路的设计、制作和性能 ,该单片电路包括完全的输入端和级间匹配 ,输出端的匹配在芯片外实现 ,该放大器在 5.2~ 5.8GHz带内连续波工作 ,输出功率大于 36.6d Bm,功率增益大于 18.6d B,功率附加效率 34 % ,4芯片合成的功率放大器在 4 .7~ 5.3GHz带内 ,输出功率大于 4 2 .8d Bm( 19.0 W) ,功率增益大于 18.8d B,典型的功率附加效率为 34 %。  相似文献   

7.
测试验证了谐波的源端阻抗对于器件的性能以及输出特性有很大的影响,所以基波匹配中不能忽视谐波的影响。基于此研制了一款采用0.25μm工艺GaN 功率MMIC 12-17GHz放大器芯片,源端加入了谐波控制的部分。后期通过管壳测试以及后仿真分析功放的性能,提出一些改进芯片的方法。芯片采用二级放大的结构。末级匹配电路采用功率匹配,兼顾功率和效率;级间考虑二次谐波的匹配,进一步提高效率。输入和级间均采用有耗匹配,提高稳定性。芯片在12-17 GHz范围内漏压28V,输出功率35dBm,功率增益14-15dB,最大功率附加效率大于40%。  相似文献   

8.
戈勤  陶洪琪  余旭明 《半导体学报》2015,36(12):125003-4
本文报道了一款基于南京电子器件研究所GaAs pHEMT单片集成电路工艺的S波段宽带高效率功率放大器。为了提高芯片效率,该放大器采用驱动比为1:8的两级级联方式,并采用低通/高通滤波器相结合的拓扑结构设计每级的匹配电路。这种匹配电路在有效降低芯片面积的同时,在较宽的频带范围内实现对应于高效率的阻抗匹配。在5V漏压AB类偏置条件下,该功率放大器在1.8到3GHz频率范围内连续波输出饱和功率为33~34 dBm,相应的附加效率达到35%~45%,以及非常平坦的功率增益25~26 dB。芯片面积紧凑,尺寸仅为2.7mm×2.75mm。  相似文献   

9.
报道了一款基于0.25μm GaN HEMT工艺的C波段75 W高效率功率放大器MMIC。为提高功率增益,芯片的整体拓扑结构设计为三级。在末级输出匹配电路上设计了一个高效电抗式匹配拓扑,在末级管芯输入匹配电路上运用了谐波控制技术,同时利用GaN HEMT器件大信号模型来优化驱动比,通过这三种技术途径有效提高了芯片的附加效率。为扩展工作带宽及提高稳定性,其他匹配电路采用有耗匹配方式。在漏压28 V、脉宽100μs、占空比10%的工作条件下,芯片在4.8~6.0 GHz频带范围内,典型输出功率达到75 W(最高81 W),增益大于25.5dB,附加效率大于51%(最高55%),芯片面积为3.8 mm×5.5 mm。  相似文献   

10.
毛小庆  何勇畅  陈志巍  喻青  高海军 《微电子学》2020,50(4):499-502, 508
基于0.15 μm GaAs(D-Mode)pHEMT工艺,采用多级级联的方式,设计了一种中心频率为2.4 GHz的高效率功率放大器。采用两级级联放大结构,驱动级采用共源结构,提高了输出功率和线性度。功率级采用自偏置技术共源共栅结构,增益和效率得到提升。工作模式分别为A类和AB类。版图面积为1.45 mm2。仿真结果表明,在驱动级电路工作于5 V、功率级电路工作于10 V、频率为2.4 GHz的条件下,1 dB压缩点功率为31.99 dBm,最大输出功率为32.01 dBm,小信号增益为30.51 dB,功率附加效率为40.74%。输入功率为1.48 dBm时,在1.94~2.82 GHz频带内,输出功率为30.29~32.07 dBm,功率附加效率为30%~41.9%,小信号增益峰值为31.97 dB,3 dB带宽为880 MHz。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号