首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
本文介绍了降低NOx排放浓度的分级燃烧技术——分解炉梯度燃烧自脱硝技术原理,并结合其在5?000 t/d生产线上的技术改造、调试及生产运行情况,阐述了应用分解炉梯度燃烧自脱硝的分级燃烧技术,可在不影响窑系统产质量、煤耗的前提下,较大幅度地降低氨水消耗,并与SNCR系统组合脱硝确保实现NOx≤100 mg/Nm3的超低排放要求。  相似文献   

2.
通过对生产线全面系统的测试,并借助化学分析、CFD模拟手段,研究生产线NOx减排技术,通过对风、煤、料的合理布置和分配,在分解炉建立了强还原区,降低回转窑内产生的NOx,同时抑制分解炉内NOx的产生量,进而达到降低NOx排放的目的。通过本技术的研究,分解炉出口NOx排放浓度可控制在500 mg/Nm3以下,降低了后续脱硝技术的运行成本,适合于大部分生产线脱硝技术改造。  相似文献   

3.
独传新  武浩  暨诗琪  刘栋 《水泥》2023,(3):20-22
中材株洲水泥有限责任公司5 000 t/d水泥生产线采用SNCR+分级燃烧技术进行脱硝,虽能满足现有排放标准,但随着国家环保形势日趋严峻,企业面临巨大的环保压力。为彻底解决NOx排放问题,中材株洲联合河南中材环保采用尘硝一箱化SCR脱硝技术,并在中材株洲生产线顺利建成投运。项目投运后窑尾烟囱NOx排放浓度稳定控制在100 mg/Nm3以内,氨逃逸控制在2.5 mg/Nm3以内,达到超低排放要求,同时脱硝氨水用量降低约75%,NOx排污总量降低约1 100 t/a,可为水泥企业实现NOx超低排放提供参考借鉴。  相似文献   

4.
国内某6 000t/d水泥熟料生产线实施了预热器降阻、分解炉扩容、分级燃烧和整体更换成第四代中置辊式破碎机冷却机等一系列改造实践。改造后,窑系统各项运行指标均有明显提升,分级燃烧结合SNCR脱硝系统实现了NOX<50mg/Nm3的超低排放,脱硝氨水(浓度20%)用量约3.6kg/t,达到了预期效果。  相似文献   

5.
湖南常德南方水泥厂生产线,正常生产时烟囱NOx原始浓度为580~670mg/Nm3,原SNCR系统在低于100mg/Nm3的控制目标下,氨水用量小时均值为1.2m3/h,原系统无法将烟囱NOx浓度小时均值稳定控制在50mg/Nm3以下。经过上海万澄公司的技术改造后,智能He-SNCR系统在低于100mg/Nm3的控制目标下,氨水用量小时均值为0.731m3/h,并实现将烟囱NOx浓度小时均值稳定控制在50mg/Nm3以下,氨水用量小时均值为1.028m3/h。通过上海万澄的He-SNCR系统技术改造,氨水节约率为39.08%,系统可实现50mg/Nm3以下超低排放稳定控制。  相似文献   

6.
探讨了水泥窑炉燃烧过程中NOx的生成机理的生成机理,介绍了第二代分解炉梯度燃烧自脱硝的技术及实验室竖式电炉模拟分解炉内气体反应的试验技术及实验室竖式电炉模拟分解炉内气体反应的试验,研究了不同炉膛温度、停留时间、还原剂浓度下CO与NO的反应历程的反应历程。在湖北某水泥生产线技改项目中的工程应用表明,梯度燃烧自脱硝分解炉可实现脱硝效率6060%,出分解炉烟气NOx浓度400400mg/m3(标),月平均氨水用量下降6060%以上以上,每年可节约氨水使用成本200万元以上万元以上。  相似文献   

7.
介绍了水泥窑烟气脱硝窑头和窑尾烧成系统改造的技术原理和改造方案,探讨采用窑头低氮煤粉燃烧技术可实现降低回转窑内热力型NOx产生量,采用窑尾分解炉还原燃烧控制技术可实现将回转窑内产生的热力型NOx还原,大大降低了整个系统NOx产生量。实践表明,窑头低氮煤粉燃烧技术和分解炉高强还原燃烧控制技术可实现脱硝效率60%以上,大大减少NOx排放总量,降低了氨水用量和脱硝成本。  相似文献   

8.
介绍了水泥窑烟气脱硝窑头和窑尾烧成系统改造的技术原理和改造方案,探讨采用窑头低氮煤粉燃烧技术可实现降低回转窑内热力型NOx产生量,采用窑尾分解炉还原燃烧控制技术可实现将回转窑内产生的热力型NOx还原,大大降低了整个系统NOx产生量。实践表明,窑头低氮煤粉燃烧技术和分解炉高强还原燃烧控制技术可实现脱硝效率60%以上,大大减少NOx排放总量,降低了氨水用量和脱硝成本。  相似文献   

9.
计算分析了现有水泥生产线热平衡支出项中影响热耗的主要因素,针对水泥行业能耗双控目标,提出了能效提升解决方案。现有生产线技改项目应用显示,烧成系统热效率再提升5%~9%,熟料标准煤耗降低10kg/t.cl以上,达到并优于GB 16780-2021标准中熟料单位产品综合煤耗指标1级能效;能效提升的同时,通过应用分解炉自脱硝源头减排技术,分解炉出口CO浓度不超过500ppm,喷氨前NOX本底浓度<350mg/Nm3,氨水用量3kg/t.cl的条件下,NOX排放浓度<50mg/Nm3,满足国家环保标准要求。  相似文献   

10.
分析了水泥窑烟气特性和SCR脱硝系统运行后对水泥窑及余热发电系统的影响,针对实施SCR脱硝的难点,确定采用“高温高尘”SCR脱硝工艺技术路线,以实现窑尾氮氧化物的超低排放。采用“高温高尘”SCR脱硝系统工艺方案,氮氧化物排放浓度可从300mg/Nm3降低至45mg/Nm3,达到超低排放要求,氨逃逸浓度<5mg/Nm3,吨熟料生产成本预计增加4.25元,余热发电系统总发电量预计减少0.67%。  相似文献   

11.
随着水泥行业“超低排放”的推进,NOx排放要求逐步向100mg/m3甚至50mg/m3看齐。水泥窑碳基脱硝通过控制煤粉燃烧产生焦炭和CO还原NOx,具有无须添加脱硝剂、避免氨逃逸、与生产流程结合良好、改造和运行成本低的优势,可作为水泥行业实现“超低排放”的辅助工艺。本文首先介绍了碳基脱硝的主要实施方式,包括回转窑低氮燃烧、分解炉分级燃烧和增设还原区等。然后讨论了焦炭和CO还原NOx的特性和机制。焦炭还原效果与其比表面积和活性位点有关。CO还原反应可在无催化条件下发生,但CO体积分数小于1%时效果可以忽略。焦炭、CaO和煤灰等可作为催化剂,将CO还原NO的温度窗口下限从900℃降低至600~800℃。最后综述了CO对选择性非催化法(SNCR)的影响及其机制,认为碳基脱硝与氨基脱硝具有耦合协同潜质。水泥窑碳基脱硝的进一步研究可以关注以下方面:在更为全面和系统的工况下评价脱硝特性,试验和理论结合明确脱硝机制,开发碳基与氨基协同脱硝技术等。  相似文献   

12.
介绍了管道脱硝炉的工作原理及技术特点,并对原有生产线进行了脱硝改造,通过增加管道脱硝炉,改造烟室(增大横截面积、调整斜坡角度、拉大月亮门与斜坡间的垂直距离、合理布置喷枪等改造措施),经过生产实践与调试,现已实现控制水泥窑尾烟气NOx排放浓度<50 mg/Nm3。  相似文献   

13.
通过优化设计自脱硝,抬高三次风风管,下移煤粉燃烧器,多层多点布置燃烧器,增大自脱硝还原区,提高自脱硝效率,实现NOx本底排放低于350 mg/m3。结合SNCR精准脱硝技术,多层多点布置喷枪,精确计量每组喷枪的氨水流量和压缩空气量,动态调节喷枪的雾化效果,控制烟囱NOx排放(标况下)低于50 mg/m3,吨熟料氨水用量仅有2.0~2.2 kg/t。  相似文献   

14.
以“前端控制氮氧化物产生量”为主的技术路线对烧成系统进行改造:将原双路三次风管改为单路侧旋进风并上移入分解炉位置;拆除原分解炉燃烧器,在锥体缩口上方布置两套无外风节能型强旋流燃烧装置;改进下料方式;重新布置窑尾煤粉输送管道和加长、加粗原鹅颈管。改造后,配合SNCR脱硝系统优化工艺参数,加强工艺管控,实现氮氧化物排放小于50mg/m3,氨水用量由吨熟料5.94kg降至2.85 kg.  相似文献   

15.
为进一步降低水泥窑NOx排放量,选择宿州海螺2号窑作为工业实践探究对象。通过优化煤质、调整氨水喷枪类型及位置、优化操作的方式,最终将NOx排放浓度控制在100 mg/m^3以内,熟料生产成本上升1.06元/吨。实践证明:燃煤中氮含量低,系统产生的NOx会显著减少;改善喷枪雾化效果、优化喷枪位置脱硝效果得到明显提高;对分解炉上下部分煤比例进行调整,增大分解炉锥部用煤量,可使分解炉锥部形成还原区。  相似文献   

16.
针对徐州中联1号万吨生产线面临的能效提升技术瓶颈,研究提出了烧成系统减污降碳解决方案,在中国水泥工业首次应用了五级改六级预热器技术,同时,进行分解炉扩容并采用自脱硝技术提高主燃区的效率,提高回转窑转速,采用带中置辊式破碎机的第四代篦式冷却机替换原有冷却机。改造后,预热器出口温度降低了83℃,熟料单位产品综合煤耗降低约14kgce/t.cl,低于GB 16780-2021标准中的1级限额值约4%,每年节约标煤4.3万吨,减少二氧化碳排放10.8万吨;在现有窑尾框架内应用自脱硝源头减排技术,NOx排放浓度<25mg/Nm3,满足并优于当地环保标准要求,节约氨水用量1.0万吨,实现了能耗双控和超低排放目标下水泥生产技术的全新升级。  相似文献   

17.
梯度燃烧自脱硝技术基于水泥生产自身的原理特点,对于正常烟煤可以达到50%~70%的脱硝效率,可实现NOx500mg/m~3(标)(@10%O_2),最低可至300mg/m3(标)(@10%O_2)。但是水泥生产燃用石油焦时有一定特殊性,其NOx减排效果有待研究,本文介绍了自脱硝技术在土耳其煅烧石油焦项目的应用,其本底排放浓度达1 500mg/m3(标)(@10%O_2)以上,经过自脱硝技术应用,可以达到800mg/m~3(标)以下,通过分析明确了进一步优化的方向。  相似文献   

18.
煤粉燃烧过程中生成的NOx主要是燃料型NOx,约占总量75%~80%,其余为热力型NOx和快速型NOx。煤粉低氮燃烧技术的核心是控制燃料型NOx的生成。通过对煤粉锅炉按照“先炉内、后炉外”的总体技术路线,采用炉内De-NOx低氮燃烧技术结合SNCR喷氨技术,将低氮燃烧技术应用于煤粉锅炉,将烟气氮氧化物有效控制在200mg/Nm^3以内。大大减少氨水、液氧等脱硝剂的投入量,既降低了运行成本又有效缓解了脱硝剂对设备及烟道的腐蚀,使烟气NOx排放浓度符合我国《火电厂大气污染物排放标准》。  相似文献   

19.
采用RFG富氧燃烧方法在新疆某电厂350 MW机组锅炉上进行数值模拟,对燃烧时炉内温度场、CO与O2及NOx排放进行分析。结果表明:在21%、25%、29%富氧燃烧工况下,NOx排放浓度均低于空气燃烧时的浓度;四角切圆燃烧煤粉锅炉采用富氧燃烧后,炉膛出口NOx浓度由空气燃烧时的359 mg/m3分别降低到235 mg/m3、272 mg/m3、305 mg/m3;高浓度的CO2与煤粉反应生成CO,形成还原性氛围,有助于抑制NOx生成以及增大对已生成NOx还原的概率;在氧气含量为21%的浓度下,通过增加循环烟气中NO含量可以减少NOx的生成和排放。  相似文献   

20.
对水泥烧成系统的氮氧化物形成机理进行了分析,形成了脱硝分解炉的设计思路.脱硝分解炉的设计思路为,通过提高三次风管高度,降低分解炉喂煤点位置,在中间形成一个缺氧区域,在分解炉下部创建脱硝还原区,最终将回转窑内生成的氮氧化物全部还原.实际改造项目显示,脱硝分解炉结合SNCR系统,可将系统氮氧化物排放浓度控制在50mg/Nm...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号