首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
汽车用超高强度双相钢CR550/980DP冷轧边裂问题,严重影响热轧/冷轧工序界面生产顺行,易造成冷轧机架间及连退炉内断带事故,成为超高强度双相钢生产的难题。基于高温热塑性曲线和热轧动态CCT曲线,采用对显微组织、力学性能、裂纹扩展分析等手段明确冷轧边裂产生原因。试验结果分别指出,精轧阶段带钢横向温度分布不均匀、边部温降大,导致在第Ⅲ脆性区轧制;同时,受Nb作用再结晶温度提高,边部低温区为未再结晶区轧制;当应变量超过塑性极限、轧制力超过边部热强度时,形成热轧卷边裂。边部形成细小弥散的铁素体(F)和马氏体(M)两相组织,不协调应变将导致F/M相界面产生应力集中而形成裂纹;裂纹以微孔聚集方式进行扩展,形成热轧卷无边裂-冷轧边裂现象。通过投用边部加热器和优化初轧定宽量、精轧入口温度、精轧机架间冷却水、终轧温度、卷取温度等措施,实现热轧卷边部质量改善、解决边裂问题。  相似文献   

2.
针对南阳汉冶特钢有限公司250mm×1 650mm断面连铸坯生产的低合金Q345B钢板探伤不合格现象,通过对不合格钢板取样进行电镜检测分析,得出中心锰偏析、硫化锰夹杂、氧化铝夹杂是导致探伤不合格的主要原因。通过优化成分来降低钢中锰元素质量分数、提高钢水洁净度、降低钢水硫质量分数、优化连铸二冷制度、严控铸机开口度等措施,铸坯中心偏析得到了改善,轧后钢板探伤质量合格率得到了提高。  相似文献   

3.
通过热力学计算分析了430铁素体不锈钢钙处理后在生成液态夹杂物区间内钢中钙质量分数和铝质量分数的关系,并对430铁素体不锈钢未采用钙处理和采用钙处理板坯中夹杂物类型、数量进行了对比,分析了钙处理夹杂物变性过程。结果表明,精炼过程喂入硅钙线可以得到理想的钙处理效果。钙处理后430钢水中高熔点的Al_2O_3和低变性的CaO-SiO_2-Al_2O_3-MgO夹杂物得到良好变性,夹杂物数量比未采用钙处理时明显减少,夹杂物尺寸都小于15μm。CaO和Al_2O_3两者通过发生化学反应变性为低熔点的液态夹杂物。  相似文献   

4.
为研究石油套管钢(34Mn6)中夹杂物的演变规律,对钙处理效果进行精准化控制,进行全流程取样分析,通过采用SEM-EDS分析夹杂物形貌和成分,同时结合Aspex夹杂物自动分析仪统计夹杂物的数量、成分和尺寸分布。研究结果表明,LF精炼具有较好的脱硫与脱氧能力;钙处理前,由于渣钢反应的进行,夹杂物数量明显减少,夹杂物成分中SiO2含量增加;经过钙处理后,夹杂物成分发生显著变化,由MgO-Al2O3系转变为MgO-Al2O3-CaO系和SiO2-Al2O3-CaO系,夹杂物形貌由尖角夹杂向球状夹杂过渡。在铸坯中,夹杂物数量减少,其成分已偏离液相区,向富CaO区域移动。对钙处理进行优化,通过利用热力学软件FactSage进行计算,得出钢液中钙的质量分数稳定在0.001 3%时对夹杂物的改性效果最佳,钢液中的夹杂物控制较好。  相似文献   

5.
为了降低冷轧带钢的横向同板差,通常需要采用紧边轧制工艺,带钢边部处于大拉伸应力状态,很容易引起边裂或断带。提出一种冷轧带钢来料横断面形状的简单描述方法,以热轧来料横断面参数作为输入参数,采用板形模拟软件分析了来料断面形状的两个关键参数对带钢出口张应力与出口断面形状的影响规律。模拟结果表明,减小热轧来料边部15和40mm处凸度值C_(15)和C_(40),改善热轧带钢边部减薄,不仅有利于减小冷轧带钢横向同板差,而且可以改善带钢边部残余拉应力,从而减小冷轧带钢边部张应力,有利于避免第一道次带钢发生边裂与断带事故。  相似文献   

6.
在钢液凝固过程中施加脉冲电流,通过观察和分析凝固试样中夹杂物的形貌、数量、尺寸和分布状态等,以研究施加脉冲电流对钢中夹杂物迁移行为的影响。结果表明,在脉冲电流的影响下,钢液凝固初期形成的晶核会发生脱落而形成结晶雨;在晶核下落过程中,钢中夹杂物也会随之向下部迁移。随着脉冲电流强度的逐渐增加,钢锭上、中部夹杂物逐渐减少,晶粒尺寸变小。在本试验条件下,当电流强度为56.6 A/cm2 时,钢锭上、中部夹杂物的总面积和总数量分别比未施加脉冲电流时的降低46.9% 和35.6%。对于夹杂物含量要求较高的钢种而言,在钢锭凝固过程中施加脉冲电流,控制结晶雨的形成和迁移过程不失为一种有效去除钢中夹杂物、提高钢锭质量的技术手段。  相似文献   

7.
通过光学显微镜、扫描电镜、能谱分析以及酸洗模拟等方法,研究了高强IF钢HC250IF表面条带缺陷的产生原因、结构特点和控制措施。结果表明,氧化铁皮沿带钢宽度方向的不均匀分布以及拉矫破碎效果不充分导致了带钢边部比中部更容易发生过酸洗。在磷元素表面富集和晶界偏聚作用下,基体晶界处优先发生选择性侵蚀,侵蚀裂纹沿晶界从表面向内部扩展,形成具有厚度差的多孔区和粗糙区结构。冷轧过程中,缺陷部位变形撕裂,产生了大量表面微裂纹,增大了局部粗糙度差异,进而在带钢边部形成条带缺陷。以优化匹配热轧和酸洗工艺参数、改善热轧带钢表面状态为基础,通过控制酸洗进程、提高酸洗质量均匀性等措施,能够有效减少这类缺陷的发生。  相似文献   

8.
在实验室条件下,采用高温钼丝炉对用45钢和重轨钢熔炼成的帘线钢进行脱氧和渣钢平衡试验,研究了精炼渣组分对夹杂物形态的影响。结果表明:在精炼渣碱度为0.8~1.2时,夹杂物中Al2O3含量和钢中Als随精炼渣中Al2O3含量的增加而增加。把精炼渣Al2O3质量分数控制在10%以下时,能够使CaO-SiO2-Al2O3夹杂物处于塑性范围内。因此,在低碱度条件下,通过Si、Mn脱氧和调整精炼渣中Al2O3含量来控制夹杂物的形态是可行的。  相似文献   

9.
为了解某厂高强度工程机械用钢Q550MD铸坯夹杂物来源,优化生产工艺,提高铸坯质量,采用大样电解和夹杂物自动扫描分析方法,对铸坯中夹杂物数量、尺寸、形貌及成分进行研究。结果表明,电解试样中大型夹杂物尺寸集中在80~140 μm,形状大多为球形,主要成分为铝酸钙。铸坯中大型夹杂物在形成最终复合夹杂物前均来自于钢包,且可能发生结晶器卷渣。检测的铸坯宽度方向1/4位置发现夹杂物聚集现象,夹杂物数量明显高于边部和1/2位置,这与结晶器流场不合理有关。  相似文献   

10.
针对某钢厂结晶器液面翻腾导致卷渣严重与中间包过热度控制缺乏依据为背景,对结晶器内流态和过热度对表面质量影响开展研究。文献调研与大量线状缺陷电镜分析发现,导致线状缺陷的夹杂物主要是氧化铝和保护渣,且引起线状缺陷的大尺寸夹杂物主要分布在铸坯表层5mm内。减少吹氩量与增大浸入深度可提高双股流比例,基于水模型和工业试验,提出控制临界吹气量得到双股流。应用该结果后,消除了结晶器液面翻腾现象,提高中间包过热度可减少钩状坯壳深度与铸坯表层夹杂物数量。综合考虑钢水洁净度提出冷轧薄板钢过热度控制在25~40℃。基于以上措施,该厂炼钢缺陷导致降级率由1.1%降至0.6%。  相似文献   

11.
李波涛 《山东冶金》2010,32(4):31-33
利用金相和扫描电镜等分析手段,对SPHC钢出现边裂的板卷进行了分析。结果表明,铸坯的加热不当造成铸坯过热、过烧,使边部晶粒异常长大,并且局部晶界产生缩孔是导致边裂的主要原因,铸坯近表层的夹杂物富集,促进了轧制过程中裂纹的扩展,造成严重边裂。建议轧制过程中加强对坯料加热制度的管理,避免铸坯过热、过烧。  相似文献   

12.
唐钢FTSC薄板连铸机生产中碳硼微合金钢热轧板卷存在边部裂纹缺陷。通过对SS400B钢进行高温热塑性研究,发现弯曲矫直温度为750℃时热塑性最差;由于铸坯边角部冷却速度快,温度低,塑性较差,边角部振痕处存在可见裂纹;在对存在边部裂纹的铸坯取样分析时发现晶界间有非金属元素析出,同时晶界间存在裂纹。轧制时形成边部裂纹缺陷。  相似文献   

13.
试验高牌号无取向硅钢(/%:0.006C,3.28Si,0.22Mn,0.030P,0.007S)的生产流程为180t BOF-真空精炼-230mm×(900~1750mm)板坯连铸-热轧成2.02mm板,冷轧成1.65mm板。从热轧基板的边部组织、力学性能、剪边以及断口显微形貌和成分等方面分析了冷轧高牌号硅钢中边裂的成因和机理。结果表明,高牌号硅钢冷轧板边部裂纹为解理断裂,热轧板料边部的存在混晶组织而导致塑性下降、圆盘切边引发撕裂带的裂纹和小凹坑是引发冷轧边裂主要因素;另外,边部断口处S和Mn的偏析也是引起边裂裂纹的重要因素;通过热轧过程减小边部与中部温差,热轧后圆盘剪刀片侧间隙由410μm减少到280μm,连铸过程电磁搅拌参数从380 A/3 Hz改进为350 A/6 Hz等工艺措施,使高牌号无取向硅钢冷轧板边裂发生率由原来的14%下降至4%。  相似文献   

14.
通过金相组织观察和热力学计算相结合的方式对309L奥氏体不锈钢板热轧边裂缺陷进行了分析。试验结果表明,309L钢(0.012% C,0.034% N)板坯热轧加热温度1260 ℃边部三角区存在大量网状铁素体,在后续加热过程中高温铁素体含量进一步升高,达到24%左右,导致塑性降低,轧制过程中产生边裂缺陷。通过控制钢中C含量0.015%~0.025%,N含量0.04%~0.05%,热轧板加热温度1150 ℃,使钢中铁素体含量降至10.7%,有效避免309L钢板边裂,板卷合格率达100%。  相似文献   

15.
李国平  张威  李俊  范新智 《特殊钢》2010,31(1):36-37
S31803双相不锈钢(%:0.019C、22.50Cr、5.40Ni、3.15Mo、0.18N)200 mm连铸坯热轧成5 mm卷板易产生边裂。通过控制钢中S含量≤0.005%,加RE-Si-Fe合金变质硫化物,将钢中氧含量由53×100-6降至26×10-6,提高铸坯等轴晶比例,控制铸坯加热温度1150~1250℃,有效地防止5 mm热连轧卷板边裂的产生。  相似文献   

16.
为了更好地了解铸坯中元素偏析、疏松和夹杂物分布规律,采用金属原位分析仪对帘线钢72A连铸坯进行了原位成分统计分布分析,并探讨了铸坯中C、Si、Mn、P、S和Al元素分布规律,发现C、Si、Mn和P元素在铸坯中心都存在明显的偏析,且中心区域的偏析程度比边部严重。Mn元素含量的分布规律与C元素相似,在铸坯边部附近,C、Mn元素有明显的负偏析带,在铸坯中心区域元素出现了明显的正偏析带,整体上,Mn元素成分分布比C元素更均匀;比较这几种元素的成分分布,发现Si元素成分分布较均匀,而P元素成分分布较不均匀。帘线钢中Al、S元素基本上都以夹杂物的形式存在,两种元素分布规律极其相似,且中心夹杂物的含量明显比边部多。由于铸坯中心存在明显的缩孔,导致铸坯表观致密度下降,表观致密度为0.869 0。  相似文献   

17.
马良  荣哲  项利  仇圣桃  赵沛 《特殊钢》2013,34(4):59-61
2.9 mm热轧3%Si高牌号无取向硅钢板(/%:0.004 6C、3.04Si、0.32Mn、0.49Als、0.004S、0.013P、0.0042N)由CSP(Compact Strip Production紧凑式带材生产线)流程:120 t BOF-70 mm CC-热轧工艺生产。热轧终轧温度872℃,卷取温度683℃。铸坯及热轧板的组织和夹杂物的分析结果表明,铸坯组织为典型的贯穿柱状晶组织;热轧板边部为再结晶组织,中部为纤维组织带有少量再结晶晶粒;高牌号无取向硅钢的主要夹杂物为铸坯-Al2O3, AlN和Cu2S+MnS;热轧板-Al2O3, AlN,AIN+MnS和Cu2S+MnS。  相似文献   

18.
摘要:边部线状缺陷是热轧卷板最为常见的缺陷之一,与连铸坯缺陷、轧制工艺与装备等因素有关,难以判定产生的关键工序,严重影响了热轧卷板表面质量的有效控制。为了探明其形成机制,采用扫描电镜、金相显微镜及酸洗等手段表征了某公司Q355、Q235钢热轧板的典型线状缺陷及铸坯边角部裂纹特征,结果表明:线状缺陷表面及横截面上均含有Ca、Si及连铸保护渣特有的K、Na成分,横截面上裂纹两侧存在氧化铁/夹杂物层、较厚的氧化圆点层以及脱碳与晶粒长大等高温氧化特征,同时Q235连铸坯存在角部横裂纹,因此,连铸结晶器保护渣卷入形成的夹渣/皮下夹杂是热轧卷板线状缺陷的主要诱因;而线状缺陷的表面宽度、横截面上裂纹延伸的深度及其倾斜角度的差异,主要与轧制成品厚度与角部横裂纹的深度有关。控制线状缺陷的关键在于优化连铸结晶器液面控制、保护渣黏度及二次冷却工艺,降低连铸坯边角部的皮下夹杂与裂纹的发生率。  相似文献   

19.
12Cr2Mo,14CrMo和15CrMo钢的生产流程为铁水-110t BOF—LF—VD-300 mm×(1700~2400)mm板坯CC工艺。分析了钢中碳含量,Mn/S,结晶器倒锥度,结晶器冷却工艺和保护渣,浸入式水口插入深度等因素对连铸板坯表面纵裂的影响。通过将优化前3种钢的结晶器倒锥度1.10优化成12Cr2Mo钢1.20,14CrMo钢1.15,15CrMo钢1.10,浸入式水口的插入深度由原先的170~180 mm调整到140~150 mm,使用粘度较低的保护渣(碱度1.25,1300℃粘度0.129 Pa·s),以增加渣液的流动性,连铸板坯表面纵裂缺陷得到了有效的控制,纵裂率由原先的8.9%降低到优化后的3.2%。  相似文献   

20.
吕安明  李猛  刁峰  张庆 《特殊钢》2018,39(2):38-40
25MnCrNiMoA 钢(/%:0.25~0.26C,0.22~0.25Si,1.25~1.30Mn,0.008~0.011P,0.002~0.004S,0.45~0.50Cr,0.36~0.38Ni,0.24~0.26Mo,0.04~0.08Cu,0.025~0.031Alt)的生产流程为100t UHP EAF-LF-VD-Φ650mm坯连铸-轧制Φ120mm材。试制过程热轧材出现批量表面裂纹。通过对轧材表面裂纹缺陷部位组织观察和分析,发现裂纹附近组织存在明显的脱碳及夹杂物,并且裂纹末端存在多条铁素体条带,表明连铸坯质量缺陷是25MnCrNiMoA圆钢产生表面裂纹的主要原因。通过控制[S]≤0.003% ,连铸时液面波动≤2mm,拉速0.26 m/min,过热度20~30℃ ,降低二冷水量,矫直温度≥950°C,优化保护渣组成等工艺措施,避免了25MnCrNiMoA钢热轧材表面裂纹的形成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号