首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Penetration and perforation behavior of glass fiber reinforced plastic (GFRP) plates containing 20% sand filler have been investigated via high velocity impact tests using sharp tipped (30°) projectile and quasi‐static perforation tests. Two size sand filler (75 and 600 μm) were used in 4‐, 8‐, and 14‐layered laminated composite plates to study sensitivity of filler size toward loading system. Composite plates were examined for perforation load rate at 5 mm/min and high‐velocity impact loading up to 220 m/s. Results indicated higher energy absorption for GFRP plates containing sand filler for both high‐velocity impact and quasi‐static perforation tests. Higher ballistic limits were recorded for specimens containing sand filler. The study showed clear role played by coarse‐sized sand filler as a secondary reinforcement in terms of higher energy absorption as compared with nonfilled and specimens containing fine‐sized fillers. The investigation successfully characterized behavior of quasi‐static test during penetration and perforation of the sharp‐tipped indenter as an aid for impact application studies. Residual frictional load in the specimens containing sand filler constituted considerable portion of load bearing during perforation in quasi‐static tests. Delaminations followed by fiber and matrix fracture were major failure mode in high‐velocity tests and the main energy absorbing mechanism in thick‐walled plates, whereas in quasi‐static tests the failures were more of matrix fracture and fiber sliding. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

2.
Textile structures have become quite popular as reinforcement materials in composite laminates due to their high impact‐damage tolerance and energy absorption ability. The impact performance of textile composites is not only affected by the type of fiber/matrix but also by the fabric structure used as reinforcement. The aim of this study was to compare the mechanical and ballistic performance of composite laminates reinforced with single‐layer and double‐layer interlocked woven fabrics. Kevlar®−29 multifilament yarn was used for preparation of all the fabric structures and epoxy resin was used as the matrix system. The composites were produced using a hand lay‐up method, followed by compression molding. The mechanical and ballistic performance of composites reinforced with single‐layer and double‐layer interlocked woven fabrics was investigated in this study. The energy absorption and mechanical failure behavior of composites during the impact event were found to be strongly affected by the weave design of the reinforcement. The composites reinforced with double‐layer interlocked woven fabrics were found to perform better than those comprising single‐layer fabrics in terms of impact energy absorption and mechanical failure. POLYM. COMPOS., 35:1583–1591, 2014. © 2013 Society of Plastics Engineers  相似文献   

3.
三维正交机织复合材料弹道冲击实验及破坏模式   总被引:4,自引:3,他引:1  
本文用钢芯弹对三维机织复合材料作弹道冲击测试。得到了弹体的入射速度和剩余速度,比较了常见几种材料的弹道性能评价参数的差异,并考察侵彻破坏模式和靶体最后的损伤破坏形态。在300-800m/s冲击速度范围下观测了材料的冲击破坏形态,发现机织复合材料受弹面和子弹出射面破坏形态不一样,受弹面主要是以纤维的压缩、剪切破坏以及基体开裂为主,出射面以纤维的拉伸、厚度方向的纱线断裂为主要破坏模式。通过对破坏模式和形态的分析,可以帮助建立更加准确的破坏准则,从而在设计抗弹材料时起到一定的作用。  相似文献   

4.
Materials used in blast, penetration, and impact loaded structural applications require high strength and toughness under high strain rate loading. 510A‐40 brominated bisphenol‐A‐based vinyl ester resin was developed and reinforced with different loadings of nanoclay and exfoliated graphite platelet to produce composites with optimal flexural rigidity, vibration damping, and enhanced energy absorption. As these reinforced polymeric materials are viscoelastic in principle, the mechanical behavior was characterized under two extremes of strain rate loading. In this article, the macroscopic response of brominated vinyl ester reinforced with 1.25 and 2.5 wt % nanoclay and exfoliated graphite platelet is considered. Air‐blast experiment was conducted by subjecting these specimens to a high‐transient pressure in a shock‐tube with flexural loading configuration. The axial response was investigated quasi‐statically in a uniaxial tension/compression test and dynamically in a compression Split‐Hopkinson bar test. The servo‐hydraulic MTS system was used to simulate the shock‐tube testing in a flexural quasi‐static loading configuration. High strain rate properties obtained from shock‐tube experiment are compared with that of characterized under the simulated quasi‐static flexural loading. Further, a computational finite element analysis model was developed in ANSYS LSDYNA to predict with reasonable accuracy the dynamic response of shock‐loaded nanoreinforced specimens. Drop in both failure strain and energy absorption was observed with the addition of nanoparticles to pristine vinyl ester. However, an improvement in energy absorption was observed in case of shock‐tube loading at high strain rates as compared to that loaded quasi‐statically. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci., 2012  相似文献   

5.
This paper reports the responses of basalt unsaturated polyester laminates under static three‐point bending loading and low‐velocity impact. Three kinds of composite materials, unidirectional (0°), cross‐ply (0°/90°) and woven laminates were considered. The laminates were fabricated by layup process and hot pressed under pressure. Static three‐point bending tests and low‐velocity impact tests were conducted to obtain the force–deflection, force–time, deflection–time, velocity–time, and energy–time curves. The results showed that unidirectional (0°) laminates carried more load during static loading, but in the event of dynamic loading, cross‐ply, and woven laminates were more superior. It was observed that the failure of 0° laminates was along the fiber direction while for cross‐ply and woven, the damage was localized, around the impacted locations. From the different combinations of unidirectional (0°), cross‐ply (0°/90°) and woven lamina, the impact behaviors could be optimized with the lowest area density. POLYM. COMPOS., 35:2203–2213, 2014. © 2014 Society of Plastics Engineers  相似文献   

6.
三维正交机织复合材料弹道侵彻有限元模拟   总被引:2,自引:1,他引:1  
测试复合材料弹道侵彻性质,得到复合材料弹道侵彻过程中子弹的入射速度和剩余速度及冲击破坏形态。基于复合材料的真实细观结构,建立细观结构模型,运用商用有限元软件ABAQUS/Explicit计算复合材料弹道侵彻破坏过程。研究发现三维正交复合材料不同破坏机制:三维正交机织复合材料不产生冲击分层,纤维断裂和基体开裂是主要吸能模式,复合材料冲击破坏是最主要的破坏模式。  相似文献   

7.
This article deals with the drapability of 3D woven glass fabrics for composite applications. The study focuses on forming a 3D fabric over the mold, the result is a preform, which generally is then injected with a polymer matrix by so called Liquid Composite Molding (LCM) technique. When draping pre–impregnated composites, the fabric is embedded in the epoxy resin as matrix material. Various drape models for dry and pre‐impregnated fabrics have been proposed in the work. Solidworks and ANSYS are the software used for modeling and simulation of 3D woven fabric composites. Given the linear density (tex) and density of E‐glass fiber, the radius of the yarn was calculated. So far the cross section of yarn is assumed to be perfectly circular in shape, keeping the perimeter of yarn constant the circular cross section was deformed into a race track shape which is a much more practical and realistic shape of a yarn cross section. After calculating all the required dimensions, all the three 3D woven structures namely angle interlock, warp interlock and orthogonal were developed in solidworks. All the parameters like total number of warp and weft yarn per unit distance and thickness of the fabric were kept constant in all three structures. The analysis is based on first principles and the parameters of yarn and fabric construction. Results obtained through simulation are reported. These are validated with experimental composite samples. The model used to predict drapability of 3D woven glass‐epoxy composite gives good results. Orthogonal structure proves to be the best as far as resistance to deformation is concerned. However, if a relatively more flexible and formable prepreg is desired, it is advisable to use angle interlock or warp interlock structures. Warp interlock 3D structure proves most beneficial for draping on a mold. POLYM. COMPOS., 37:472–480, 2016. © 2014 Society of Plastics Engineers  相似文献   

8.
Recycling of any waste is as such a worldwide phenomenon. In this context application of textile waste for development of some value added product has been thought of in this work. Textile fabric waste is collected from various sources. These waste materials are garneted, so as to produce loose fibrous material. Subsequently this fibrous material was converted into nonwoven web and also twisted strand for manufacturing of 3D woven preforms to be used in composites. In case of nonwoven preforms, the webs are produced by combining polypropylene with cotton component with different proportions. Composites of various specifications are developed to examine their application in several end uses. These composite materials are characterized for their mechanical and thermal behavior in order to find out the response against tensile loading, impact force and thermal loading. The effects of moisture absorption on mechanical properties of these composites are investigated. As the percentage of PP fibres is increased in the web, mechanical performance of the composite material is improved in general. The exposure of composite material to high humidity condition has not shown any significant change in their mechanical behavior. 3D woven fabric reinforced composite produced by using garneted fibre yarn and virgin cotton OE yarn didn't exhibit any significant difference in the mechanical and thermal behavior of composite. The results confirmed that textile waste material can be safely used as reinforcing structure in composite manufacturing. POLYM. COMPOS., 35:1960–1967, 2014. © 2014 Society of Plastics Engineers  相似文献   

9.
不同结构纺织复合材料准静态侵彻实验分析及有限元模拟   总被引:8,自引:7,他引:1  
本文研究了两种不同结构三维结构纺织复合材料——三维正交机织玻璃纤维,不饱和树脂复合材料和双轴向纬编针织玻璃纤维/不饱和树脂复合材料在MTS材料试验机上的准静态侵彻测试。以纯铝MTS实验数据为标定,分析了准静态侵彻载荷一位移曲线及其破坏机理,比较了不同结构纺织复合材料以及纯铝的位移一载荷曲线,由此计算得到位移与吸能关系曲线。同时根据复合材料各自织物中纤维束排列及织物成型特点,分别建立了复合材料的细观结构模型和单胞模型。编写用户子程序(VUMAT),用ABAQUS软件进行了有限元模拟。结果表明:三维纺织复合材料各自损伤结果和载荷-位移曲线与实验结果吻合较好,证明有限元的有效性。三维正交结构复合材料抗侵彻能力优于双轴向纬编针织复合材料,但是破坏过程中其抗侵彻能力幅值变化差异大,没有针织复合材料抗侵彻能力稳定。  相似文献   

10.
Jian Ma  Ying Yan 《Polymer Composites》2013,34(7):1099-1109
Crashworthiness performance of carbon and glass composite tubes have been comprehensive investigated under quasi‐static and dynamic axial crush testing. In this study, collapse modes and specific energy absorption (SEA) of different ply orientation of carbon fabric composites and unidirectional glass tubes were analyzed. For the weaker tensile strength and bending strength of glass composites, crack propagated approximately perpendicular to the fiber direction when the ply angle was small. Large amount of fibers breakage made the specific energy absorption over 80 kJ/kg under dynamic load. Thickness effect had inverse influence on SEA under different impact rate. The specific energy absorption declined as tube thickness increased under dynamic crush tests, however, increased under quasi‐static tests. Hybridization of glass/carbon tubes and carbon/carbon composites were analyzed by increased the axial fiber content. It was found that hybridization tubes of G803/3234 fabric and G827/3234 axial tapes with higher G827/3234 content present excellent energy‐absorption capability under dynamic and quasi‐static tests for all specimens tested. POLYM. COMPOS., 34:1099–1109, 2013. © 2013 Society of Plastics Engineers  相似文献   

11.
本文研究了柔性机织复合材料及其增强体顶破的破坏形态和失效机理。在MTS-810材料试验机上分别对两种材料进行准静态顶破实验测试,通过观察顶破过程中两种材料变形,指出它们形变的异同点。并对实验得到的载荷—位移曲线进行分析讨论,说明材料在顶破载荷作用下的失效机理以及涂层对织物顶破性能的影响。  相似文献   

12.
In this article, experimental results are presented investigating the response of glass fiber composites subjected to low velocity impact loading. The resulting load‐displacement traces and deformation modes have been used to validate a number of numerical models. Here, finite element models have been developed to predict the impact behavior of the composite plates. Damage in the woven glass‐fiber reinforced composite plate was modeled using the Hashin failure criteria. The influence of target size, projectile size, projectile shape, and striking location on the impact response of the composites was investigated. In general, good agreement was obtained in terms of the load‐displacement traces and the failure modes in the composite plates. It has been shown that the perforation energy increases rapidly with target thickness, with the numerical results closely agreeing with the experimental data. Similarly, the energy required to perforate the composite targets increases with increasing projectile diameter, with the failure mechanisms being similar in all cases. Finally, increasing the bluntness of the impactor resulted in a significant increase in the energy to perforate these targets. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

13.
本文利用冲击加载实验装置对碳纤维编织复合材料梁的横向冲击损伤与断裂行为进行了实验研究,确定了不同冲击速度下冲击载荷响应、梁的动态位移变化以及梁的动态应变演化历史等动态力学行为,给出复合材料梁的冲击吸收能量及其Mises有效应力。同时,利用扫描电镜对编织复合材料的损伤断裂机理进行微观分析。  相似文献   

14.
This article reports on the fabrication and evaluation of extrinsic Fabry–Perot interferometric (EFPI) sensors when embedded in fiber‐reinforced composites and tested under quasi‐static tensile and compressive mechanical loading. The EFPI strain sensors were embedded in carbon fiber composite test specimens, and their performance was compared against a surface‐mounted extensometer and electrical resistance strain gauges. When the composite was subjected to quasi‐static tensile loading, the sensors failed around a strain level of 0.5%; under compressive loading, the sensors survived until the failure of the composite at 1.1% strain. The EFPI sensors used in this study were fabricated in‐house and the issues relating to fabrication are discussed in the context of their performance when embedded in composites. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

15.
In this study, the rate dependent energy dissipation process and the fracture toughness of physical gels were investigated using agarose as a sample material. Both the J‐integral and Essential work of Fracture (EWF) methods were examined. To assess the quasi‐static fracture toughness of gels, linear regression was performed on critical J (Jc) values at different loading rates resulting in a quasi‐static Jc value of 6.5 J/m2. This is close to the quasi‐static EWF value of 5.3 J/m2 obtained by performing EWF tests at a quasi‐static loading rate (crosshead speed of less than 2 mm/min). Nearly constant crack propagation rates at low loading rates, regardless of crack length, suggest viscoplastic chain pull‐out is the fracture mechanism. At high loading rates failure was highly brittle, which is attributed to sufficient elastic energy accumulation to precipitate failure by chain scission. We conclude that in physical gels quasi‐static fracture toughness can be evaluated by both the J‐integral and EWF methods provided the effects of loading rate are investigated and accounted for. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

16.
An anisotropic continuum damage modeling approach was applied to model failure of a composite of unidirectional flax in a polypropylene matrix under quasi‐static tensile loading. Tensile, compressive and shear stiffness, and strength values of the composite were characterized according to ASTM standards, and the damage was quantified by optical microscopy. Based on the experimental strength and damage values, an anisotropic strain‐dependent material damage model was developed and implemented in the finite element program ABAQUS. This was combined with geometric models of the fabric composites incorporating the yarn geometry. Good agreement was observed between the experimental and numerical stress–strain curves, and the failure strength prediction by the model was within 3.1% of the experimental value. This study shows that combining a geometric model closely incorporating the actual geometry of a fabric composite with an experimentally determined material degradation model can yield good predictions of the mechanical behaviour of the composite. POLYM. COMPOS., 37:2588–2597, 2016. © 2015 Society of Plastics Engineers  相似文献   

17.
This article presented the energy absorption behaviors and damage mechanisms of 3D braided composites under transverse impact and low‐velocity impact with frequency domain analysis method. The transverse impact tests were contracted by modified split Hopkinson pressure bar with the impact velocities of 13.6, 17.8, and 22.8 m/s. The low‐velocity impact tests were performed by Instron 9250 drop‐weight instrument with the impact velocities ranging from 1 to 6 m/s. The experimental results shown that the peak load, displacement to peak load, total energy absorption increased with the increase of impact velocity. The damage morphologies showed the failure mode of 3D braided composite. Increased with the impact velocity, the failure mode changed from resin crack to fiber breakage. The frequency domain analysis results showed that the amplitude of stress wave increased with the increase of impact velocity, but its corresponding frequency was irrelevant to impact velocity. The different amplitude regions corresponded to different failure mode. POLYM. COMPOS., 37:1620–1627, 2016. © 2014 Society of Plastics Engineers  相似文献   

18.
Abstract

The present study reports static and impact mechanical properties of jute fibre-based thermosetting composites using woven and flat braided jute fabrics. Tensile, three-point flexural and low-to-medium energy drop-weight impact tests were conducted and mechanical properties were evaluated to study their dependence upon surface modifications of the fibre materials due to bleaching and coating treatments. Full-bleaching (longer and rigorous) treatments improved interfacial bonding and tensile strength properties of the woven jute composites compared to unbleached and half-bleached counterparts. Bleaching treatments did not seem to improve the flexural strength of composites. Unbleached (natural) jute composites have relatively better flexural strength due to reduced microstructural waviness or fibre crimping to facilitate flexural failure. With coated jute yarns, the tensile properties of the resultant flat braided composites slightly degraded, whereas the flexural properties showed clear improvements. The changes in the mechanical properties were broadly related to the accompanying modifications and to the state of microstructural imperfections, namely fibre/matrix interfacial adhesion, severity of resin matrix shrinkage during the curing process, fibre/matrix debonding and distribution of disbonds within the matrix region, and also to the relative fibre filament density along the loading axis, in the cured composite structure. There was a clear indication that natural woven jute composites could be more effective in applications requiring better impact damage resistance, energy absorption capability and improved progressive crushing behaviour.  相似文献   

19.
Experimental studies are presented on the performance of insert assemblies of the sandwich structures under localized through‐the‐thickness compressive loading. Through‐the‐thickness and partially inserted fully potted inserts are studied. Insert materials considered are: aluminum and 3D woven composite. Experimental results are compared with the analytical predictions. It is observed that the specific strength of 3D woven composite inserts is more than that of aluminum inserts. Further, it is observed that the specific strength of through‐the‐thickness inserts is more than that of partially inserted fully potted inserts. Delamination between upper face plate and core material and sliding of attachment/insert within the core are the main modes of failure initiation. Quantitative results are presented for typical cases. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

20.
The ACC (Automotive Composite Consortium) is interested in investigating the use of random chopped fiber reinforced composites as crash energy absorbers primarily because of the low costs involved in their manufacture thus making them cost effective for automotive applications. Although many scientists have investigated the energy absorption characteristics in various continuous fiber reinforced composite materials and their dependence on strain rate, there is very little literature available on the energy absorption and crushing characteristics of random chopped fiber reinforced composite materials and their strain rate dependence. Therefore, the primary goal was to determine the crashworthiness of various random chopped carbon fiber composite material systems. To meet this goal, first an experimental set up was developed for discerning the deformation behavior and damage mechanisms that occur during the progressive crushing of composite materials. The three different random chopped carbon reinforced epoxy composite material systems studied were P4, HexMC, and CCS100. Quasi‐static progressive crush tests were then performed on these random chopped carbon fiber composite plates to determine their crashworthiness. In addition, an attempt was made to investigate and characterize the strain rate effects on the energy absorption of a random chopped carbon fiber P4 composite. The specific energy absorption was found to increase with increasing loading rate from 15.2 to 762 cm/min. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1477–1486, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号