首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
研究0°单向、0°/90°交错和平纹织物三种不同铺层方式玄武岩纤维增强复合材料低速冲击加载力学性能。在实验中,通过手糊成型法并在硫化机上加热加压制备层压复合材料,且在Instron9250落锤冲击测试仪上完成层压复合材料低速冲击试验,得到载荷-挠度曲线和载荷-时间曲线,用于分析三种不同铺层方式玄武岩纤维增强不饱和聚酯树脂层压复合材料低速冲击加载力学性能。通过观察层压复合材料破坏形态来分析其破坏方式。实验结果表明:0°/90°交错层压复合材料和平纹织物增强层压复合材料抗低速冲击性能优于0°单向层压复合材料;0°单向层压复合材料破坏方式为裂纹沿着纤维方向伸展,而0°/90°交错层压复合材料和平纹织物层压复合材料破坏只发生在冲击点附近局部区域。  相似文献   

2.
The degradation mechanism for hygrothermal aging of woven carbon‐epoxy and woven glass‐epoxy composite laminates was investigated in the micro‐scale. Interlaminar shear and cross laminar flexural tests were performed on notched and unnotched specimens to know the mechanical performance of the composite laminates. The Interlaminar Shear Stress (ISS) for both the composites was also evaluated and correlated with the number of hygrothermal cycles. Four‐point bending and tensile or compression shear loading configurations were also used. The stress at the onset of delamination (Delamination Damage Tolerance, DDT) was identified from the load‐deflection curve of the flexural specimens and correlated with the number of hygrothermal cycles. It was found that both the ISS and DDT decrease with the exposure time. Dimensional stability was almost unchanged throughout the aging process, although there was a very little moisture absorption (∼1.3%) in glass‐epoxy and carbon‐epoxy composite laminates. SEM photomicrographs of the delaminated surface show that failure occurs suddenly in a macroscopically brittle mode by crack initiation and propagation method. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers.  相似文献   

3.
《Polymer Composites》2017,38(10):2182-2191
This paper demonstrates the results of an experimental study on cross ply carbon/epoxy composite laminates fabricated from high temperature hardener HT972 subjected to impact loading at different velocities and temperatures. The carbon fiber reinforced plastic (CFRP) samples were impacted at velocities 1.5 m/s and 2.5 m/s, each at a temperature level of 30°C, 60°C, 90°C, and 120°C. The impact response of the material towards various velocities and temperatures was determined using impact parameters like peak force, absorbed energy, maximum deflection, and rebound velocity. Result reveals that the velocity and temperature play a significant role in the impact response of the material. The variation in the trend of Flexural After Impact (FAI) strength of composite laminates at different velocities and temperatures was determined using FAI test and these results were further correlated with impact results. The dominating failure modes affecting the residual strength of the samples were found using acoustic emission (AE) monitoring. POLYM. COMPOS., 38:2182–2191, 2017. © 2015 Society of Plastics Engineers  相似文献   

4.
Resol was solution blended with vinyl acetate‐2‐ethylhexylacrylate (VAc–EHA) resin in an aqueous medium at a 90‐10 w/w ratio with hexamethoxymethylmelamine (HMMM) as crosslinker. Here we aimed to study the impact behavior of unidirectional laminates cast from (Resol/VAc–EHA/HMMM)/glass fiber (GF), (Resol/VAc–EHA/HMMM)/polyethylene fiber (PEF), and (Resol/VAc–EHA/HMMM)/GF/PEF (hybrid) and to study the role of PEF ply/plies in hybrid laminates toward the impact behavior, as dependent on the relative position of the ply/plies. A brittle failure mode was observed in the GF‐reinforced laminates, which tended to the ductile failure mode, with the incorporation of PEF ply/plies. Again, the impact fracture mode of GF was minimized by the placement of PEF ply/plies at the impacted side of the hybrid laminates. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 339–342, 2004  相似文献   

5.
The aim of this study is to prepare of self‐reinforced polyethylene graded composite laminates (SrPEGCL) by adopting both concepts of “graded” and “self‐reinforced” and analyze their mechanical properties under tensile loading. Three different kinds of fiber volume fractions were employed to prepare continuous fiber unidirectional symmetry SrPEGCL with two graded directions. Tensile experiments were carried out to investigate tensile properties of SrPE composites in longitudinal, transverse, and 45‐bias direction. The microscopic failure mechanism of SrPEGCL were studied and observed by Scanning Electron Microscope (SEM). Laminate stress analysis with ply‐by‐ply discount method was adopted to investigate the damage mechanism using failure criteria and parallel spring model. Observations and conclusions about the effect of graded structure and graded direction on mechanical properties of SrPEGCL under tensile loading were discussed. Compared to common self‐reinforced polyethylene composites, SrPEGCL with the same or even less overall fiber volume fraction exhibited 10–20% higher tensile strength under longitudinal, transverse and 45‐bias loading direction, while graded direction had an effect on the mechanical strength of SrPEGCL as well. POLYM. COMPOS., 36:128–137, 2015. © 2014 Society of Plastics Engineers  相似文献   

6.
Experimental studies are presented on the quasi‐static shear plugging behavior of nanoparticle dispersed materials viz symmetric balanced cross‐ply laminates made using unidirectional E‐glass fabric with epoxy resin, and neat epoxy resin. The nanoparticles used are nanosilica and multiwalled carbon nanotube for E‐glass/epoxy and nanosilica for epoxy resin. The effect of nanoparticle dispersion on shear plugging strength was evaluated. Shear plugging strength was enhanced up to 10.5% for E‐glass/epoxy and up to 17.0% for neat epoxy resin on addition of nanoparticles. Shear plugging strength of nanoparticle dispersed composites decreased with an increase in specimen thickness. POLYM. COMPOS., 37:3411–3415, 2016. © 2015 Society of Plastics Engineers  相似文献   

7.
Multi‐axial multi‐ply fabric (MMF) composites are becoming increasingly popular as reinforcing materials in high‐performance composites due to their high mechanical properties. This work aimed to study the effects of three variable parameters including fiber contents, numbers of plies, and layer orientations on the mechanical properties of MMF composites. Unidirectional carbon fibers and a two‐part epoxy resin were employed to produce the composite laminates using the manual lay‐up process. It was found that the mechanical properties of composites made with 5‐ply were slightly greater than 3‐ply composites. However, there was no highly significant difference between them. Generally, the angle‐ply of the composites showed the greatest effect on the mechanical properties compared with number of plies and layer orientations. The significant improvements in mechanical properties of the composites were further supported using scanning electron microscopy (SEM). Morphologies of the tensile fracture surfaces of composites revealed that the presence of fiber pulled out results in the creation of voids between the fibers and matrix polymer. This causes the mechanical properties of the composites to be reduced. Finally, the enhancement of mechanical properties of composites clearly confirmed that angle‐ply layer (0°,?35°,0°,+35°,0°) had the most significant reinforcing effect among other parameters evaluated. POLYM. ENG. SCI., 54:2676–2682, 2014. © 2013 Society of Plastics Engineers  相似文献   

8.
The relationship between textile architecture and the damage sequence under tensile loading has been investigated experimentally for a composite material reinforced with a noncrimp glass‐fiber textile of configuration [0°, +45°, 90°, −45°] stacking sequence based on epoxy resin matrix cured with high‐temperature hardener. The system chosen for this work consists of a bifunctional epoxy, diglycidyl ether of bisphenol A, cured with a tetrafunctional amine, diaminodiphenyl sulfone (DDS). This system ensures to obtain a rigid material with excellent mechanical properties in order to observe, analyze, and identify the process and progress of the generated damage and the failure mechanism which leads to the materials fracture. The properties have been studied for each ply direction at 0°, +45°, 90°, and −45° in order to make a comparative assessment of the influence of the polyester (PES) yarns in zig‐zag and unidirectional geometry, that hold together the four plies in the textile, in the composite damage generation. The laminates were uniaxially tensile loaded until final fracture occurred. It was found that PES threads have an effect on cracking progression depending on the textile orientation. POLYM. COMPOS., 2009. © 2009 Society of Plastics Engineers  相似文献   

9.
An open hole flexural strength and impact energy of flax yarn‐reinforced polypropylene (PP) composites were studied in this work. Highest flexural strength and strength retention were observed for axial (06) and cross‐ply (0/90/0)s laminates, respectively, while also examining the influence of laminate lay‐up and open hole size on flexural strength. It was found that maleic anhydride‐grafted polypropylene (MAPP)‐treated composite laminates achieved marginal improvement on flexural strength for all kinds of laminate lay‐up. Off‐axial laminates (±456) showed a good strength retention for open hole laminates after MAPP treatment. The fractography study confirmed microbuckling and matrix crack propagation over the compressive and tensile side of the laminate, respectively. Furthermore, severe surface damage was detected over the tensile side of 8‐mm hole size laminates. Impact test of the flax/PP laminates showed slight improvement by MAPP treatment. High‐ and low‐impact energy was experienced for axial and off‐axial laminates. The damaged impact sample shows evidence of fiber pull‐out for untreated flax yarn reinforced laminates. POLYM. COMPOS., 34:1912–1920, 2013. © 2013 Society of Plastics Engineers  相似文献   

10.
The aim of this work is to study the effect of kenaf volume content and fiber orientation on tensile and flexural properties of kenaf/Kevlar hybrid composites. Hybrid composites were prepared by laminating aramid fabric (Kevlar 29) with kenaf in three orientations (woven, 0o/90o cross ply uni‐directional (UD), and non‐woven mat) with different kenaf fiber loadings from 15 to 20% and total fiber loading (Kenaf and Kevlar) of 27–49%. The void content varies between 11.5–37.7% to laminate with UD and non‐woven mat, respectively. The void content in a woven kenaf structure is 16.2%. Tensile and flexural properties of kenaf/Kevlar hybrid composites were evaluated. Results indicate that UD kenaf fibers reinforced composites display better tensile and flexural properties as compared to woven and non‐woven mat reinforced hybrid composites. It is also noticed that increasing volume fraction of kenaf fiber in hybrid composites reduces tensile and flexural properties. Tensile fracture of hybrid composites was morphologically analysed by scanning electron microscopy (SEM). SEM micrographs of Kevlar composite failed in two major modes; fiber fracture by the typical splitting process along with, extensive longitudinal matrix and interfacial shear fracture. UD kenaf structure observed a good interlayer bonding and low matrix cracking/debonding. Damage in composite with woven kenaf shows weak kenaf‐matrix bonding. Composite with kenaf mat contains the high void in laminates and poor interfacial bonding. These results motivate us to further study the potential of using kenaf in woven and UD structure in hybrid composites to improve the ballistic application, for example, vehicle spall‐liner. POLYM. COMPOS., 36:1469–1476, 2015. © 2014 Society of Plastics Engineers  相似文献   

11.
This article analyzes the influence of temperature on the delamination phenomenon in two composites with the same carbon‐fiber reinforcement, but different epoxy matrices. Interlaminar crack initiation and propagation under Mode I with static and fatigue loading are experimentally assessed for different test temperatures: 20, 50, and 90°C. The materials under study are made of AS4 unidirectional carbon fibers and different matrices: one is made of a 3501‐6 epoxy matrix (AS4/3501‐6), whereas the other is made of an 8552 epoxy matrix modified to increase its toughness (AS4/8552). Both composites have a symmetric laminate configuration [0°]16s. In the experimental program, double cantilever beam specimens were tested under static and fatigue loading. A fractographic study was also performed using a scanning electron microscope on samples obtained from specimens previously tested under static and fatigue loading. A comparison was made of the fracture surfaces at the different test temperatures and the experimental tests' results obtained. POLYM. COMPOS., 36:747–755, 2015. © 2014 Society of Plastics Engineers  相似文献   

12.
《Polymer Composites》2017,38(11):2536-2543
The effects of fiber hybridization on damage behavior of hybrid glass/carbon composites under high‐velocity impact were investigated. The Hashin damage model is adopted to model the damage initiation of composites, and the bilinear form of damage evolution law based on the effective displacement is employed. The numerical results show a reasonable agreement with the experimental data. The residual velocity of impact projectile is approximately shown a linearly decreasing trend with the increasing of the thickness of glass fabric ply. As the proportion of glass fabric ply in the hybrid laminates increases, the impact resistance of laminates increased gradually. POLYM. COMPOS., 38:2536–2543, 2017. © 2015 Society of Plastics Engineers  相似文献   

13.
Textile structures have become quite popular as reinforcement materials in composite laminates due to their high impact‐damage tolerance and energy absorption ability. The impact performance of textile composites is not only affected by the type of fiber/matrix but also by the fabric structure used as reinforcement. The aim of this study was to compare the mechanical and ballistic performance of composite laminates reinforced with single‐layer and double‐layer interlocked woven fabrics. Kevlar®−29 multifilament yarn was used for preparation of all the fabric structures and epoxy resin was used as the matrix system. The composites were produced using a hand lay‐up method, followed by compression molding. The mechanical and ballistic performance of composites reinforced with single‐layer and double‐layer interlocked woven fabrics was investigated in this study. The energy absorption and mechanical failure behavior of composites during the impact event were found to be strongly affected by the weave design of the reinforcement. The composites reinforced with double‐layer interlocked woven fabrics were found to perform better than those comprising single‐layer fabrics in terms of impact energy absorption and mechanical failure. POLYM. COMPOS., 35:1583–1591, 2014. © 2013 Society of Plastics Engineers  相似文献   

14.
Jian Ma  Ying Yan 《Polymer Composites》2013,34(7):1099-1109
Crashworthiness performance of carbon and glass composite tubes have been comprehensive investigated under quasi‐static and dynamic axial crush testing. In this study, collapse modes and specific energy absorption (SEA) of different ply orientation of carbon fabric composites and unidirectional glass tubes were analyzed. For the weaker tensile strength and bending strength of glass composites, crack propagated approximately perpendicular to the fiber direction when the ply angle was small. Large amount of fibers breakage made the specific energy absorption over 80 kJ/kg under dynamic load. Thickness effect had inverse influence on SEA under different impact rate. The specific energy absorption declined as tube thickness increased under dynamic crush tests, however, increased under quasi‐static tests. Hybridization of glass/carbon tubes and carbon/carbon composites were analyzed by increased the axial fiber content. It was found that hybridization tubes of G803/3234 fabric and G827/3234 axial tapes with higher G827/3234 content present excellent energy‐absorption capability under dynamic and quasi‐static tests for all specimens tested. POLYM. COMPOS., 34:1099–1109, 2013. © 2013 Society of Plastics Engineers  相似文献   

15.
A statistical model has been proposed to predict the evolution of matrix cracking in the transverse lamina of cross‐ply laminates subjected to longitudinal tensile loading. The analytical model is based on a fracture mechanics approach which considers that the critical fracture toughness Gc of the 90° layers is not a constant but follows a Weibull distribution. Monte‐Carlo simulation technique is applied to predict the initiation and propagation of transverse cracking in terms of applied stress versus crack density. The effects of the thickness of the 90° layers on progressive damage and failure are also discussed in this study. Good agreements are reached between simulation and experimental results. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

16.
The prediction of nominal strength is very important in the design and evaluation of materials especially polymer matrix composites. Various cohesive laws forms are successfully used in predicting the nominal strength of laminated composite structures. For composite structures, fracture toughness is dominated parameter when using cohesive laws to predict their nominal strength. In spite of complex reported models, this study propose an easy simple model to predict the fracture toughness of multidirectional composite laminates using the fracture toughness of the 0° ply ones. This model is mainly based on the geometry of fiber orientation and linear elastic fracture mechanics and uses the fracture toughness of the 0° ply obtained from compact tension test specimens. A good prediction is obtained by comparing the model results with experimental data which are obtained from center‐cracked specimens manufactured using different lay‐ups orientations and materials. POLYM. ENG. SCI., 54:234–238, 2014. © 2013 Society of Plastics Engineers  相似文献   

17.
Three‐dimensional (3D) orthogonal woven composite has high stiffness, strength, and energy absorption capacity along X, Y, and Z directions because there are no crimps in yarn. This paper presents mechanical behaviors and energy absorptions of the 3D orthogonal hybrid woven composite under transverse impact and quasi‐static loading by flat‐ended rod. The failure load and energy absorption of the composite increase with the increase in loading rate. The damage morphology of the composite coupon manifests the compression failure in the front side and tension failure in rear side. There are no delaminations in the composite coupons for both quasi‐static and impact loading for the existence of Z‐yarn in fabric structure. This phenomenon manifests the potential application of the 3D orthogonal woven composite to impact resistance areas. POLYM. COMPOS., 27: 410–416, 2006. © 2006 Society of Plastics Engineers  相似文献   

18.
In this article, simple viscoelastic and empirical models are presented to predict and analyze the flexural creep behavior of all‐poly(propylene) (all‐PP) composites. Results of the successful application of these models to the actual creep behavior of unidirectional (UD) and cross‐ply (CP) all‐PP composites tested by short‐term flexural creep measurements over a temperature range of 20–80°C are presented. Analysis of the momentary creep behavior of all‐PP composites with different tape lay‐ups are made to understand their deformation mechanism. Further to the main theme of the article, an interesting discrepancy while predicting the long‐term creep behavior of these composites based on the time‐temperature superposition (TTS) principle and Findley power law model is visualized which has also been illustrated here. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

19.
The mechanical properties of biobased composites of poly(β‐hydroxybutyrate)‐co‐poly(β‐hydroxyvalerate) biopolymer continuously reinforced with unidirectional Alfa fibers are investigated via tensile testing of oriented composite laminates. Simple mechanical models for the elastic stiffness, strength, and nonlinear hardening of the biobased composites are proposed with an emphasis on techniques that only require the independent properties of the fiber and matrix to facilitate composite design. Rule of mixtures (ROM) approaches are found to effectively predict the elastic properties of the composites but generally overestimate strength. Modified ROM approaches that discount the contribution of the matrix in the fiber loading direction and the contribution of the fiber in the transverse loading direction provide the most accurate strength predictions. Apparent elastic properties for composites with varying fiber orientations are predicted using a modified orthotropic laminate plate method which was found to overestimate composite stiffness in off‐axis loading directions. Postyield nonlinear hardening is modeled using a calibrated continuum yield and plasticity model and demonstrated to provide a close match of the experimental results. POLYM. COMPOS., 35:1758–1766, 2014. © 2014 Society of Plastics Engineers  相似文献   

20.
The three‐dimensional anisotropic moisture absorption behavior of quartz‐fiber‐reinforced bismaleimide (BMI) laminates is investigated by collecting 21 months of experimental gravimetric data. Laminates of six, twelve, and forty plies and various planar aspect ratios are used to determine the three‐dimensional anisotropic diffusion behavior when exposed to full immersion in distilled water at 25°C. The long‐term moisture absorption behavior deviates from the widely used Fickian model, but can be accurately captured by the three‐dimensional, anisotropic hindered diffusion model (3D HDM). Excellent agreement is achieved between experimental gravimetric data and the 3D HDM for all laminate thicknesses. Recovered model parameters are shown to slightly vary with laminate thickness due to the small changes in the cured‐ply thickness. However, model parameters identified for a given laminate thickness are observed to accurately predict the absorption behavior of samples with different planar dimensions. Equilibrium moisture content of 1.72, 1.69, and 1.84% and corresponding diffusion hindrance coefficients of 0.807, 0.844, and 0.671 are recovered for six, twelve, and forty‐ply laminates, respectively, thus confirming strong non‐Fickian behavior. Moisture absorption parameters may be determined successfully at 16.5 months of immersion, before reaching approximately 85% of the equilibrium moisture content at 21 months. Subsequent gravimetric measurements up to 21 months are consistent with the predicted long‐term behavior. POLYM. ENG. SCI., 54:137–146, 2014. © 2013 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号