首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 802 毫秒
1.
Many sensor node platforms used for establishing wireless sensor networks (WSNs) can support multiple radio channels for wireless communication. Therefore, rather than using a single radio channel for whole network, multiple channels can be utilized in a sensor network simultaneously to decrease overall network interference, which may help increase the aggregate network throughput and decrease packet collisions and delays. This method, however, requires appropriate schemes to be used for assigning channels to nodes for multi‐channel communication in the network. Because data generated by sensor nodes are usually delivered to the sink node using routing trees, a tree‐based channel assignment scheme is a natural approach for assigning channels in a WSN. We present two fast tree‐based channel assignment schemes (called bottom up channel assignment and neighbor count‐based channel assignment) for multi‐channel WSNs. We also propose a new interference metric that is used by our algorithms in making decisions. We validated and evaluated our proposed schemes via extensive simulation experiments. Our simulation results show that our algorithms can decrease interference in a network, thereby increasing performance, and that our algorithms are good alternatives for static channel assignment in WSNs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
In general, wireless sensor networks (WSNs) consist of many sensors which transmit data to a central node, called the sink, possibly over multiple hops. This many-to-one data routing paradigm leads to nonuniform traffic distribution for the different sensors (e.g., nodes closer to the sink transfer more traffic than those farther away). In this paper, we perform an analysis of the fairness issue by presenting a tree-based WSN and derive the throughput, delay, and energy distribution for each sensor under the fairness constraint. Based on the analysis, we design our fair data collection protocol in which each node decides its media access and packet forwarding strategies in a distributed manner. Finally, we demonstrate the effectiveness of our solution through simulations. The results for the proposed protocol show the accuracy of the analysis and show that the protocol ensures the fair delivery of packets and reduces end-to-end delay. Based on the analysis, we also quantitatively determine the energy required for each of the nodes and show that a nonuniform energy distribution can maximize the network lifetime for the WSN scenario under study.  相似文献   

3.
Wireless sensor networks (WSNs) have been widely investigated in the past decades because of its applicability in various extreme environments. As sensors use battery, most works on WSNs focus on energy efficiency issues (e.g., local energy balancing problems) in statically deployed WSNs. Few works have paid attention to the global energy balancing problem for the scenario that mobile sensor nodes can move freely. In this paper, we propose a new routing protocol called global energy balancing routing protocol (GEBRP) based on an active network framework and node relocation in mobile sensor networks. This protocol achieves global energy efficiency by repairing coverage holes and replacing invalid nodes dynamically. Simulation and experiment results demonstrate that the proposed GEBRP achieves superior performance over the existing scheme. In addition, we analyze the delay performance of GEBRP and study how the delay performance is affected by various system parameters.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Recently, the interest in wireless sensor networks has been magnetized in the delay sensitive applications such as real-time applications. These time critical applications crave certain QoS requirements as though end-to-end delay guarantee and network bandwidth reservation. However, the severe resource constraints of the wireless sensor networks pose great challenges that hinder supporting these requirements. In this paper, we propose a Grid-based Multipath with Congestion Avoidance Routing protocol (GMCAR) as an efficient QoS routing protocol that is suited for grided sensor networks. We employ the idea of dividing the sensor network field into grids. Inside each grid, one of the sensor nodes is selected as a master node which is responsible for delivering the data generated by any node in that grid and for routing the data received from other master nodes in the neighbor grids. For each master node, multiple diagonal paths that connect the master node to the sink are stored as routing entries in the routing table of that node. The novelty of the proposed protocol lies behind the idea of incorporating the grids densities along with the hop count into the routing decisions. A congestion control mechanism is proposed in order to relieve the congested areas in case of congestion occurrence. Simulation results show that our proposed protocol has the potential to achieve up to 19.5% energy saving, 24.7% reduction in the delay and up to 8.5% enhancement in the network throughput when compared to another QoS routing protocol. However, when compared to the basic grid-based coordinated routing protocol, it achieves 23% energy saving. In addition, the proposed protocol shows its superiority in achieving better utilization to the available storage.  相似文献   

5.
As considerable progress has been made in wireless sensor networks (WSNs), we can expect that sensor nodes will be applied in industrial applications. Most available techniques for WSNs can be transplanted to industrial wireless sensor networks (IWSNs). However, there are new requirements of quality of service (QoS), that is, real‐time routing, energy efficiency, and transmission reliability, which are three main performance indices of routing design for IWSNs. As one‐hop neighborhood information is often inadequate to data routing in IWSNs, it is difficult to use the conventional routing methods. In the paper, we propose the routing strategy by taking the real‐time routing performance, transmission reliability, and energy efficiency (TREE, triple R and double E) into considerations. For that, each sensor node should improve the capability of search range in the phase of data route discovery. Because of the increase of available information in the enlarged search range, sensor node can select more suitable relay node per hop. The real‐time data routes with lower energy cost and better transmission reliability will be used in our proposed routing guideline. By comparing with other routing methods through extensive experimental results, our distributed routing proposal can guarantee the diversified QoS requirements in industrial applications. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Routing is one of the most important supporting parts in wireless sensor networks (WSNs) application that directly affects the application efficiency. Routing time and energy consumption are two major factors used to evaluate WSNs routing. This article proposes a minimum routing time and energy consumption (MiniTE) routing, which can ensure feasibility of the routing protocol both in routing time and energy consumption. Based on the MiniTE, WSNs can be partitioned into different regions according to the received signal strength indication (RSSI). Messages are sent by nodes in the region to their parent node and again up to their parent node until finally to the sink node. Theoretic evaluation and simulation results are given to verify the features of the protocol.  相似文献   

7.
The US Department of Defense (DoD) routinely uses wireless sensor networks (WSNs) for military tactical communications. Sensor node die-out has a significant impact on the topology of a tactical WSN. This is problematic for military applications where situational data is critical to tactical decision making. To increase the amount of time all sensor nodes remain active within the network and to control the network topology tactically, energy efficient routing mechanisms must be employed. In this paper, we aim to provide realistic insights on the practical advantages and disadvantages of using established routing techniques for tactical WSNs. We investigate the following established routing algorithms: direct routing, minimum transmission energy (MTE), Low Energy Adaptive Cluster Head routing (LEACH), and zone clustering. Based on the node die out statistics observed with these algorithms and the topological impact the node die outs have on the network, we develop a novel, energy efficient zone clustering algorithm called EZone. Via extensive simulations using MATLAB, we analyze the effectiveness of these algorithms on network performance for single and multiple gateway scenarios and show that the EZone algorithm tactically controls the topology of the network, thereby maintaining significant service area coverage when compared to the other routing algorithms.  相似文献   

8.
Routing techniques in wireless sensor networks: a survey   总被引:32,自引:0,他引:32  
Wireless sensor networks consist of small nodes with sensing, computation, and wireless communications capabilities. Many routing, power management, and data dissemination protocols have been specifically designed for WSNs where energy awareness is an essential design issue. Routing protocols in WSNs might differ depending on the application and network architecture. In this article we present a survey of state-of-the-art routing techniques in WSNs. We first outline the design challenges for routing protocols in WSNs followed by a comprehensive survey of routing techniques. Overall, the routing techniques are classified into three categories based on the underlying network structure: flit, hierarchical, and location-based routing. Furthermore, these protocols can be classified into multipath-based, query-based, negotiation-based, QoS-based, and coherent-based depending on the protocol operation. We study the design trade-offs between energy and communication overhead savings in every routing paradigm. We also highlight the advantages and performance issues of each routing technique. The article concludes with possible future research areas.  相似文献   

9.
Congestion in wireless sensor networks not only causes packet loss, but also leads to excessive energy consumption. Therefore congestion in WSNs needs to be controlled in order to prolong system lifetime. In addition, this is also necessary to improve fairness and provide better quality of service (QoS), which is required by multimedia applications in wireless multimedia sensor networks. In this paper, we propose a novel upstream congestion control protocol for WSNs, called priority-based congestion control protocol (PCCP). Unlike existing work, PCCP innovatively measures congestion degree as the ratio of packet inter-arrival time along over packet service time. PCCP still introduced node priority index to reflect the importance of each sensor node. Based on the introduced congestion degree and node priority index, PCCP utilizes a cross-layer optimization and imposes a hop-by-hop approach to control congestion. We have demonstrated that PCCP achieves efficient congestion control and flexible weighted fairness for both single-path and multi-path routing, as a result this leads to higher energy efficiency and better QoS in terms of both packet loss rate and delay.  相似文献   

10.
无线传感器网络(Wireless Sensor Networks,简称WSNs)作为一种新的获取信息的方式和处理模式,已成为通信领域的研究重点。而路由协议则是无线传感器网络当前的热点研究之一。目前,针对较为典型的分簇式路由协议LEACH路由协议的研究,是无线传感器网络目前研究的一个热点。介绍了无线传感器网络路由协议常见的攻击类型,并从路由安全的角度建议性的提出了一种对LEACH路由协议针对安全性的改进方案,并应用NS2仿真平台,对改进协议做了仿真并进行了性能分析。  相似文献   

11.
Wireless Sensor Networks (WSNs) have a broad application range in the area of monitoring and surveillance tasks. Among these tasks, disaster detection or prevention in environmental scenarios is one typical application for WSN. Disasters may for example be forest fires, volcano outbreaks or flood disasters. Here, the monitored events have the potential to destroy the sensor devices themselves. This has implications for the network lifetime, performance and robustness. While a fairly large body of work addressing routing in WSNs exists, little attention has been paid to the aspect of node failures caused by the sensed phenomena themselves. This paper presents a proactive routing method that is aware of the node’s destruction threat and adapts the routes accordingly, before node failure results in broken routes, delay and power consuming route re-discovery. The performance of the presented routing scheme is evaluated and compared to OLSR based routing in the same scenario.  相似文献   

12.
The multihop configuration of a large-scale wireless sensor network enables multiple simultaneous transmissions without interference within the network. Existing time division multiple access (TDMA) scheduling schemes exploit gain based on the assumption that the path is optimally determined by a routing protocol. In contrast, our scheme jointly considers routing and scheduling and introduces several new concepts. We model a large-scale wireless sensor network as a tiered graph relative to its distance from the sink, and introduce the notion of relay graph and relay factor to direct the next-hop candidates toward the sink fairly and efficiently. The sink develops a transmission and reception schedule for the sensor nodes based on the tiered graph search for a set of nodes that can simultaneously transmit and receive. The resulting schedule eventually allows data from each sensor node to be delivered to the sink. We analyze our scheduling algorithm both numerically and by simulation, and we discuss the impact of protocol parameters. Further, we prove that our scheme is scalable to the number of nodes, from the perspectives of mean channel capacity and maximum number of concurrent transmission nodes. Compared with the existing TDMA scheduling schemes, our scheme shows better performance in network throughput, path length, end-to-end delay, and fairness index.  相似文献   

13.
In wireless sensor networks (WSNs), clustering has been shown to be an efficient technique to improve scalability and network lifetime. In clustered networks, clustering creates unequal load distribution among cluster heads (CHs) and cluster member (CM) nodes. As a result, the entire network is subject to premature death because of the deficient active nodes within the network. In this paper, we present clustering‐based routing algorithms that can balance out the trade‐off between load distribution and network lifetime “green cluster‐based routing scheme.” This paper proposes a new energy‐aware green cluster‐based routing algorithm to preventing premature death of large‐scale dense WSNs. To deal with the uncertainty present in network information, a fuzzy rule‐based node classification model is proposed for clustering. Its primary benefits are flexibility in selecting effective CHs, reliability in distributing CHs overload among the other nodes, and reducing communication overhead and cluster formation time in highly dense areas. In addition, we propose a routing scheme that balances the load among sensors. The proposed scheme is evaluated through simulations to compare our scheme with the existing algorithms available in the literature. The numerical results show the relevance and improved efficiency of our scheme.  相似文献   

14.
In the last decade, underwater wireless sensor networks have been widely studied because of their peculiar aspects that distinguish them from common terrestrial wireless networks. Their applications range from environmental monitoring to military defense. The definition of efficient routing protocols in underwater sensor networks is a challenging topic of research because of the intrinsic characteristics of these networks, such as the need of handling the node mobility and the difficulty in balancing the energy consumed by the nodes. Depth‐based routing protocol is an opportunistic routing protocol for underwater sensor networks, which provides good performance both under high and low node mobility scenarios. The main contribution of our work is presenting a novel simulator for studying depth‐based routing protocol and its variants as well as novel routing protocols. Our simulator is based on AquaSim–Next Generation, which is a specialized tool for studying underwater networks. With our work, we improve the state of the art of underwater routing protocol simulators by implementing, among other features, a detailed cross‐layer communication and an accurate model of the operational modes of acoustic modem and their energy consumption. The simulator is open source and freely downloadable. Moreover, we propose a novel and completely distributed routing protocol, named residual energy–depth‐based routing. It takes into account the residual energy at the nodes' batteries to select the forwarder nodes and improve the network lifetime by providing a more uniform energy consumption among them. We compare its performance with that of depth‐based routing protocol and a receiver‐based routing protocol implementing a probabilistic opportunistic forwarding scheme.  相似文献   

15.
In real life scenario for wireless sensor networks (WSNs), energy heterogeneity among the sensor nodes due to uneven terrain, connectivity failure, and packet dropping is a crucial factor that triggered the race for developing robust and reliable routing protocols. Prolonging the time interval before the death of the first sensor node, viz. the stability period, is critical for many applications where the feedback from the WSN must be reliable. Although Low Energy Adaptive Clustering Hierarchy (LEACH) and LEACH-like protocols are fundamental and popular clustering protocols to manage the system’s energy and thus to prolong the lifespan of the network, they assume a near to a perfect energy homogeneous system where a node failure, drainage and re-energizing are typically not considered. More recent protocols like Stable Election Protocol (SEP) considers the reverse, i.e., energy heterogeneity, and properly utilizes the extra energy to guarantee a stable and reliable performance of the network system. While paradigms of computational intelligence such as evolutionary algorithms (EAs) have attracted significant attention in recent years to address various WSN’s challenges such as nodes deployment and localization, data fusion and aggregation, security and routing, they did not (to the best of our knowledge) explore the possibility of maintaining heterogeneous-aware energy consumption to guarantee a reliable and robust routing protocol design. By this, a new protocol named stable-aware evolutionary routing protocol (SAERP), is proposed in this paper to ensure maximum stability and minimum instability periods for both homogeneous/heterogeneous WSNs. SAERP introduces an evolutionary modeling, where the cluster head election probability becomes more efficient, to well maintain balanced energy consumption in both energy homogeneous and heterogeneous settings. The performance of SAERP over simulation for 90 WSNs is evaluated and compared to well known LEACH and SEP protocols. We found that SAERP is more robust and always ensures longer stability period and shorter instability period.  相似文献   

16.
Wireless sensor networks become very attractive in the research community, due to their applications in diverse fields such as military tracking, civilian applications and medical research, and more generally in systems of systems. Routing is an important issue in wireless sensor networks due to the use of computationally and resource limited sensor nodes. Any routing protocol designed for use in wireless sensor networks should be energy efficient and should increase the network lifetime. In this paper, we propose an efficient and highly reliable query-driven routing protocol for wireless sensor networks. Our protocol provides the best theoretical energy aware routes to reach any node in the network and routes the request and reply packets with a lightweight overhead. We perform an overall evaluation of our protocol through simulations with comparison to other routing protocols. The results demonstrate the efficiency of our protocol in terms of energy consumption, load balancing of routes, and network lifetime.  相似文献   

17.
Wireless sensor networks (WSNs) are composed of many low cost, low power devices with sensing, local processing and wireless communication capabilities. Recent advances in wireless networks have led to many new protocols specifically designed for WSNs where energy awareness is an essential consideration. Most of the attention, however, has been given to the routing protocols since they might differ depending on the application and network architecture. Minimizing energy dissipation and maximizing network lifetime are important issues in the design of routing protocols for WSNs. In this paper, the low-energy adaptive clustering hierarchy (LEACH) routing protocol is considered and improved. We propose a clustering routing protocol named intra-balanced LEACH (IBLEACH), which extends LEACH protocol by balancing the energy consumption in the network. The simulation results show that IBLEACH outperforms LEACH and the existing improvements of LEACH in terms of network lifetime and energy consumption minimization.  相似文献   

18.
The utilization of limited energy in wireless sensor networks (WSNs) is the critical concern, whereas the effectiveness of routing mechanisms substantially influence energy usage. We notice that two common issues in existing specific routing schemes for WSNs are that (i) a path may traverse through a specific set of sensors, draining out their energy quickly and (ii) packet retransmissions over unreliable links may consume energy significantly. In this paper, we develop an energy‐efficient routing scheme (called EFFORT) to maximize the amount of data gathered in WSNs before the end of network lifetime. By exploiting two natural advantages of opportunistic routing, that is, the path diversity and the improvement of transmission reliability, we propose a new metric that enables each sensor to determine a suitable set of forwarders as well as their relay priorities. We then present EFFORT, a routing protocol that utilizes energy efficiently and prolongs network lifetime based on the proposed routing metric. Simulation results show that EFFORT significantly outperforms other routing protocols. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Designing energy efficient communication protocols for wireless sensor networks (WSNs) to conserve the sensors' energy is one of the prime concerns. Clustering in WSNs significantly reduces the energy consumption in which the nodes are organized in clusters, each having a cluster head (CH). The CHs collect data from their cluster members and transmit it to the base station via a single or multihop communication. The main issue in such mechanism is how to associate the nodes to CHs and how to route the data of CHs so that the overall load on CHs are balanced. Since the sensor nodes operate autonomously, the methods designed for WSNs should be of distributed nature, i.e., each node should run it using its local information only. Considering these issues, we propose a distributed multiobjective‐based clustering method to assign a sensor node to appropriate CH so that the load is balanced. We also propose an energy‐efficient routing algorithm to balance the relay load among the CHs. In case any CH dies, we propose a recovery strategy for its cluster members. All our proposed methods are completely distributed in nature. Simulation results demonstrate the efficiency of the proposed algorithm in terms of energy consumption and hence prolonging the network lifetime. We compare the performance of the proposed algorithm with some existing algorithms in terms of number of alive nodes, network lifetime, energy efficiency, and energy population.  相似文献   

20.
This study considers an integrated topology control and routing problem in wireless sensor networks (WSNs), which are employed to gather data via use of sensors with limited energy resources. We employ a hierarchical topology and routing structure with multiple sinks and devise a topology control scheme via usable energy fraction at the sensors. We develop and examine three different mathematical models whose solutions prescribe clusterhead and sink locations and data routing from sensors to sinks in a period of a deployment cycle. We develop a heuristic solution algorithm which provides very small optimality gaps for the models. The approach utilizes two types of solution representations, a combination of multiple neighborhoods, and objective value-based cut inequalities for improving the evaluation of candidate solutions. We present extensive numerical test results and analysis of the models and the solution approach. We determine that our proposed model, which minimizes average energy usage and the range of remaining energy distribution at the sensors, captures important characteristics of topology control and routing integration in WSN design and exhibits significantly better performance than our benchmark models and a well-known protocol HEED in extending network lifetime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号