首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
首先讨论一个由非扩展映象的有限族所定义的迭代格式,主要证明了:设E为满足Opial条件的一致凸的Banach空间,C是E的非空间凸子集,Fi:C→C(i=1,2,…,r)为有限非扩展映象,且∩ri=1 F(Ti)非空,设x1∈C,迭代地定义序列{xn}如下:xn+1=Wnxn,(V)n≥1.其中Wn(n=1,2,…)为由T1,T2,…,Tr生成的W-映象.则{xn}弱收敛于T1,T2,…,Tr的共同不动点.  相似文献   

2.
有限簇非扩张非自映象的黏性逼近   总被引:2,自引:1,他引:1  
设E是一自反的Banach空间,具有E到E·的弱序列连续的正规对偶映象,K是E的非空闭凸子集而且是E的sunny非扩张收缩核.设f:K→K是一压缩映象,T1,T2,...,TN:K→E是一有限簇非扩张非自映象且∩Ni=1Fix(Ti)≠Ф.序列{xn}定义为xn+1=P(αnf(xn)+(1-αn)Tnyn),yn=P(βnxn+(1-βn)Tnxn), (A)n≥1,其中{αn},{βn}(∪)[0,1],P:E→K是一sunny非扩张保核收缩,Tn=Tn(modN).用黏性逼近方法证明了迭代序列{xn}强收敛于T1,T2,...,TN的公共不动点的充分必要条件,也推广和改进了一些文献的最新结果.  相似文献   

3.
设E是实Banach空间,C是E的非空闭凸子集,T:C→C是一致L-Lipschitz的中间意义下的渐近k-严格伪压缩映象且∑∞n=1γn<∞,任取一点x0∈E,{xn}是根据xn+1=(1-αn-βn)xn+αnTnxn+βnun定义的具误差的修改的Mann迭代序列,若F(T)非空有界,在对参数的一些适当限制条件下,得到了{xn}强收敛于T的一个不动点的充要条件是lim infn→∞D (xn,F(T))=0;去掉F(T)有界的条件后对参数进行同样的限制,得到了根据xn+1=(1-αn)xn+αnTnxn定义的修改的Mann迭代序列{xn}强收敛于T的一个不动点的充要条件是lim infn→∞D (xn,F(T))=0。  相似文献   

4.
设C是一致凸Banach空间中的非空闭凸子集,T:C→C是具有不动点的半紧 非扩张映象,其中, α<1。任取一点x0∈C,{xn}是由 * 定义的带误差的Ishikawa迭代序列,其中,* 是C中的有界点列。本文证明了{xn}强收敛于T的某一不动点。
  相似文献   

5.
主要在E*具有KK性质等条件下证明了T存在不动点当且仅当由修正的Ishikawa迭代程序xn+1=tnTnyn+(1-tn)xn yn=snTnxn+(1-sn)xn所定义的序列{xn}弱收敛且xn-Txn→0.设C是一致凸Banach空间E的非空有界闭凸子集,T:C→C是渐近非扩张映射.  相似文献   

6.
设E是一致凸Banach空间,C是E的非空闭凸子集,而且C也是E的非扩张收缩核,设{Ti}No=1:C→E是N个渐进拟非扩张非自映象,定义新的迭代序列{xn},该文证明了,若F=∩Ni=1F(Ti)≠φ且存在某Tl(1≤l≤N)是半紧的,则迭代序列{xn}强收敛于{Ti}Ni=1的公共不动点.该文结果也改进和推广了一些人的最新结果.  相似文献   

7.
K是实Banach空间E中的非空闭凸子集,T1,T2,…,TN:K→K是N个一致Li-Lipshitz渐近伪压缩映象,{xn}是K中如下定义的迭代序列:{xn+1=(1-αn)xn+αnTikyn yn=(1-βn)xn+βnTixn n≥0其中,n=(k-1)N+i,i∈I={1,2,…,N}.在适当的条件下证明了以上迭代序列强收敛于T1,T2,…,TN的公共不动点.  相似文献   

8.
E是一实Banach空间,K是E的一非空闭凸子集.设f:K→K是一压缩映象,T1,T2…,TN∶K→K是具序列{kn}[1,+∞),lim kn=1 n→∞的有限簇一致L-Lipschitzian渐近伪压缩映象,且∩F(Ti)≠Φ from i=1 to N.设序列{xn}定义为xn+1=(1-αn-βn)xn+αnf(xx)+βnTrnnyn yn=(1-γn)xn+γnTrnnxn,n≥0其中{αn},{βn},{γn}[0,1],rn=n mod N.文章在一定条件下,用黏性逼近法证明了迭代序列{xn}强收敛于T1,T2,…,TN的公共不动点.该文结果推广和改进了一些文献的最新结果.  相似文献   

9.
本文讨论了Banach空间中非空闭凸子集上的广义渐近拟非扩张型映象的迭代逼近问题,给出了具误差的修改的Ishikawa迭代序列{xn}强收敛到广义渐近拟非扩张型映象T不动点的充要条件:设E是Banach空间,C是E中的非空闭凸子集,T∶C→C是广义渐近拟非扩张型映象,其渐近系数kn满足∑∞n=1(kn-1)〈∞,又设F(T)有界,且T在F(T)中的点处一致连续。任取一点x0∈C,{xn}是根据xn+1=αnxn+βnTnyn+γnunyn=ξnxn+ηnTnxn+δnvn定义的具误差的修改的Ishikawa迭代得到的,其中{un},{vn}是C中的两个有界点列,{αn},{βn},{γn},{ξn},{ηn},{δn}是[0,1]中的6个数列且满足αn+βn+γn=1,ξn+ηn+δn=1,∑∞n=1βn〈+∞,∑∞n=1γn〈+∞。则{xn}强收敛于T的不动点的充要条件是limn→∞infd(xn,F(T))=0,其中d(x,A)为x到集合A的距离。本文的结果推广改进了文献[1-7]中的结论。  相似文献   

10.
设C是实Banach空间E的非空凸子集,T:C→C是具有不动点p的一致L-Lipschitz的渐近伪压缩映象,{xn}是带误差的修改的Ishikawa迭代序列,在存在严格增加函数:[0,∞)→[0,∞),ф(0)=0,使得〈Tnxn 1-p,j(xn 1-p)〉≤kn‖xn 1-p‖2-ф(‖xn 1-p‖)■n≥0的条件下,对参数作了一些限制,证明了带误差的修改的Ishikawa迭代序列强收敛于T的不动点p.  相似文献   

11.
设E为实Banach空间,C为E上的非空闭凸子集且为E上的收缩核,P:E→C的保核收缩映象,文章在文献[2]的基础上,对带误差的迭代序列进行了修改,并证明了序列{xn}收敛于T1,T2,…,TN的公共不动点的充分必要条件为:limn→∞inf d(xn,F)=0,最后给出了在此基础上的两个推论.  相似文献   

12.
Chidume首次提出渐近非扩张非自映象、一致L-Lipschitz非自映象的定义,并证明了所引入的迭代序列强收敛于渐近非扩张非自映象的不动点.该文引入渐近伪压缩非自映象的概念,并对一致L-Lipschitz的渐近伪压缩非自映象T提出了具误差的修改的Ishikawa迭代序列{xn}.设K是实Banach空间E的收缩核,P是从E到K上的非扩张的收缩映象.若存在严格增加函数φ:[0,∞)→[0,∞),φ(0)=0,(E)j(xn+1-x*)∈J(xn+1-x*)使得〈T(PT)n-1xn+1-T(PT)n-1x*,j(xn+1-x*)〉≤kn‖xn+1-x*‖2-φ(‖xn+1-x*‖),(A)n≥1,x*是T的不动点,在对参数的一些限制条件下,本文证明了迭代序列{xn}强收敛于非自映象T的不动点x*,其目的是把对渐近伪压缩映象的迭代结果推广到渐近伪压缩非自映象上,从而推广了以前的结果.  相似文献   

13.
设E是实的一致凸Banach空间,D是E的非空有界闭凸集.Γ:D-D是一半紧的一致L-Lipschitzian的渐近拟非扩张型映象,{Xn}是具误差的Ishikawa迭代序列,在最近有关文献定理中的条件“对任意子列{xni}包含{xn},当‖Txni^ni-xni‖→0时就有‖Txni-xni‖→0”的情况下,证明了{xn}强收敛到T的某一不动点,所以定理推广和改进了原有的有关结果。  相似文献   

14.
设E是一致凸的B anach空间,K是E的非空有界闭凸子集而且是E的非扩张收缩核.设T1,T2,…,TN:K→E是N个非扩张非自映象.证明了在一定条件下,由{xn+1=P[(1-an1)xn+an1T1yn1+un1],yn1=P[(1-an2)xn+an2T2yn2+un2],……ynN-2=P[(1-anN-1)xn+anN-1TN-1ynN-1+unN-1],ynN-1=P[(1-anN)xn+anNTNxn+unN],n≥1定义的带误差的迭代序列{xn}分别弱和强收敛于公共不动点,也推广和改进了一些已知的最新结果.  相似文献   

15.
Banach空间上广义渐近拟非扩张型映象不动点的逼近   总被引:7,自引:4,他引:3  
引入一类比渐近拟非扩张型映象更加广泛的广义渐近拟非扩张型映象,并给出具混合误差的Ishikawa迭代序列强收敛于广义渐近拟非扩张型映象的一个不动点的充要条件:设E是一Banach空间,T:E→E是广义渐近拟非扩张型映象,其渐近系数kn满足∑(kn-1)<∞;若T在F(T)中的点处一致连续,任取一点x0∈E,{xn}是由下式定义的具混合误差的Ishikawa迭代序列{xn 1=(1-αn)xn αnTnyn un, ,yn=(1-βn)xn βnTnxn vn,n≥0其中{αn}、{βn}是[0,1]中的两个数列且∞∑n=0αn收敛,{un}、{vn}是E中两个点列且{vn}有界同时∞En=0‖un‖收敛.则{xn}强收敛于T在E中一个不动点的充要条件是lim inf D(xn,F(T))=0.  相似文献   

16.
设K是实p-一致凸Banach空间E中的非空闲凸子集,T是K到自身的一致Lipschit-zian映象,且F(T):={x∈K:Tx=x}≠φ.对任给的x0∈K,带误差的Ishikawa迭代程序生成序列{xn},在T是一致伪压缩映象的条件下,证明了‖xn-Txn‖→+0(n→∞).进一步,当T是全连续算子时,证明了{xn}强收敛到T的不动点.  相似文献   

17.
Banach空间中修正的Reich-Takahashi迭代法的强收敛性   总被引:2,自引:0,他引:2       下载免费PDF全文
设E是-实的P-一致光滑的Banach空间(1相似文献   

18.
首先将序列{xn}的迭代定义为:x0∈K,xn+1=(1-α1n)xn+α1nTn1y1n,y1n=(1-α2n)xn+α2nTn2y2n,...,y(m-1)n=(1-αmn)xn+αmnTnmxn,其中{αin}满足一定的条件.若存在严格增加的函数:[0,∞)→[0,∞),且(0)=0,使得〈Tnix-x*,j(x-y)〉≤kn‖x-x*‖2-(‖x-x*‖),j(x-x*)∈J(x-x*),x∈K,i=1,2,...,m,那么{xn}强收敛到x*.x*是K中有限个一致L-李普希茨映象的公共不动点. K是Banach空间E的非空闭凸子集.  相似文献   

19.
Chidume首次提出渐近非扩张非自映象、一致L-Lipschitz非自映象的定义,并证明了所引入的迭代序列强收敛于渐进非扩张非自映象的不动点。本文引入渐近拟伪压缩型非自映象的概念。设E是实Banach空间,K是E的收缩核,P是从E到K上的非扩张收缩映象,T是一致L-Lipschitz的渐近拟伪压缩型非自映象,在对参数的一些限制条件下,给出了带误差修改的Ishikawa迭代序列强收敛于T的不动点的充要条件,即存在[0,+∞)上的严格增加函数φ(s),φ(0)=0,使得lim supn→∞j(xn+1-x*)inf∈J(xn+1-x*)[〈T(PT)n-1 xn+1-x*,j(xn+1-x*)〉-kn‖xn+1-x*‖2+φ(‖xn+1-x*‖)]≤0。目的是把对渐近拟伪压缩型自映象的迭代结果推广到渐近拟伪压缩型非自映象,从而推广了以前的结果。  相似文献   

20.
渐近非扩张映象的粘性逼近序列的强收敛定理   总被引:1,自引:0,他引:1  
假设E是具有一致Gateaux可微范数的实Banach空间,D是E的非空闭凸子集,f∶D→D是压缩映象,T∶D→D是渐近非扩张映象。设粘性逼近序列{xn}定义为xn 1=αnf(yn) (1-αn)Tnyn,yn=βnxn (1-βn)Tnxn(n≥0),其中αn∈[0,1],βn∈[0,1]。本文给出了{xn}强收敛于T的不动点的充要条件:若{αn}满足如下条件:limn→∞αn=0,∑∞n=0αn=∞,定义一簇压缩映象Sn∶D→D为Sn(z)=(1-dn)f(z) dnTnz,z∈D,其中dn=ktnn--αα,tn∈(α,1)(n=1,2,…),limn→∞tn=1且k2n-1≤(1-dn)2,n≥n0,设zn∈D是Sn的唯一不动点,即zn=Sn(zn)=(1-dn)f(zn) dnTnzn,n≥1,若limn→∞‖xn-Txn‖=0且{zn}强收敛于z*∈F(T),则{xn}强收敛于z*∈F(T)的充分必要条件是{yn}有界。本文的结果不仅是对Reich公开问题的解答,而且是对Reich[1-2]、Shioji和Takahashi[3]、张石生[4]相应结果的推广。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号