首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
主要在E*具有KK性质等条件下证明了T存在不动点当且仅当由修正的Ishikawa迭代程序xn+1=tnTnyn+(1-tn)xn yn=snTnxn+(1-sn)xn所定义的序列{xn}弱收敛且xn-Txn→0.设C是一致凸Banach空间E的非空有界闭凸子集,T:C→C是渐近非扩张映射.  相似文献   

2.
设X是一致凸Banach空间,C是X中非空闭凸子集,T:C→C是具不动点的非扩张映像,对任意的x1∈C,存在Ishikawa迭代过程{xn|(xn 1=(1-tn)xn tnT(snTxn (1-sn)xn),tn→1,sn→0,∞↑∑↓(n=1) (1-tn)= ∞的子序列{xnk},使‖xnk-Txnk‖→0(k→∞),证明了当映像T具紧性时,Ishikawa迭代过程{xn}强收敛于某不动点,当空间X满足Opial’s条件时,Ishikawa迭代过程{xn}弱收敛于某不动点。  相似文献   

3.
本文讨论了Banach空间中非空闭凸子集上的广义渐近拟非扩张型映象的迭代逼近问题,给出了具误差的修改的Ishikawa迭代序列{xn}强收敛到广义渐近拟非扩张型映象T不动点的充要条件:设E是Banach空间,C是E中的非空闭凸子集,T∶C→C是广义渐近拟非扩张型映象,其渐近系数kn满足∑∞n=1(kn-1)〈∞,又设F(T)有界,且T在F(T)中的点处一致连续。任取一点x0∈C,{xn}是根据xn+1=αnxn+βnTnyn+γnunyn=ξnxn+ηnTnxn+δnvn定义的具误差的修改的Ishikawa迭代得到的,其中{un},{vn}是C中的两个有界点列,{αn},{βn},{γn},{ξn},{ηn},{δn}是[0,1]中的6个数列且满足αn+βn+γn=1,ξn+ηn+δn=1,∑∞n=1βn〈+∞,∑∞n=1γn〈+∞。则{xn}强收敛于T的不动点的充要条件是limn→∞infd(xn,F(T))=0,其中d(x,A)为x到集合A的距离。本文的结果推广改进了文献[1-7]中的结论。  相似文献   

4.
设E是实的一致凸Banach空间,D是E的非空有界闭凸集.Γ:D-D是一半紧的一致L-Lipschitzian的渐近拟非扩张型映象,{Xn}是具误差的Ishikawa迭代序列,在最近有关文献定理中的条件“对任意子列{xni}包含{xn},当‖Txni^ni-xni‖→0时就有‖Txni-xni‖→0”的情况下,证明了{xn}强收敛到T的某一不动点,所以定理推广和改进了原有的有关结果。  相似文献   

5.
设E是实Banach空间,C是E的非空闭凸子集,T:C→C是一致L-Lipschitz的中间意义下的渐近k-严格伪压缩映象且∑∞n=1γn<∞,任取一点x0∈E,{xn}是根据xn+1=(1-αn-βn)xn+αnTnxn+βnun定义的具误差的修改的Mann迭代序列,若F(T)非空有界,在对参数的一些适当限制条件下,得到了{xn}强收敛于T的一个不动点的充要条件是lim infn→∞D (xn,F(T))=0;去掉F(T)有界的条件后对参数进行同样的限制,得到了根据xn+1=(1-αn)xn+αnTnxn定义的修改的Mann迭代序列{xn}强收敛于T的一个不动点的充要条件是lim infn→∞D (xn,F(T))=0。  相似文献   

6.
首先讨论一个由非扩展映象的有限族所定义的迭代格式,主要证明了:设E为满足Opial条件的一致凸的Banach空间,C是E的非空间凸子集,Fi:C→C(i=1,2,…,r)为有限非扩展映象,且∩ri=1 F(Ti)非空,设x1∈C,迭代地定义序列{xn}如下:xn+1=Wnxn,(V)n≥1.其中Wn(n=1,2,…)为由T1,T2,…,Tr生成的W-映象.则{xn}弱收敛于T1,T2,…,Tr的共同不动点.  相似文献   

7.
在一致凸Banach空间E的非空闭凸子集C上研究了渐近非扩张映像T不动点问题,引入了一种新的更加广泛的粘性逼近迭代算法,在适当条件下证明了该迭代序列{xn}强收敛于映像T的不动点x?∈F( T),并且x?是一个变分不等式的解。所得结果改进和推广了其他相应结果。  相似文献   

8.
Banach空间中Reich-Takahashi迭代法的强收敛问题   总被引:2,自引:0,他引:2  
设E是一实的Banach空间,D是E的非空有界闭凸集,T:D→D是一渐近非扩张型映象。文章证明了,在一些适当的条件下,由修正的Reich-Takahashi代法(1.2)式所定义的序列{xn}强收敛到T的不动点,其中XO是D中任给一定点,{αn},{βn}是[0,1]中满足某些限制的数列。  相似文献   

9.
Banach空间上广义渐近拟非扩张型映象不动点的逼近   总被引:7,自引:4,他引:3  
引入一类比渐近拟非扩张型映象更加广泛的广义渐近拟非扩张型映象,并给出具混合误差的Ishikawa迭代序列强收敛于广义渐近拟非扩张型映象的一个不动点的充要条件:设E是一Banach空间,T:E→E是广义渐近拟非扩张型映象,其渐近系数kn满足∑(kn-1)<∞;若T在F(T)中的点处一致连续,任取一点x0∈E,{xn}是由下式定义的具混合误差的Ishikawa迭代序列{xn 1=(1-αn)xn αnTnyn un, ,yn=(1-βn)xn βnTnxn vn,n≥0其中{αn}、{βn}是[0,1]中的两个数列且∞∑n=0αn收敛,{un}、{vn}是E中两个点列且{vn}有界同时∞En=0‖un‖收敛.则{xn}强收敛于T在E中一个不动点的充要条件是lim inf D(xn,F(T))=0.  相似文献   

10.
Banach空间中渐近非扩张映射的收敛定理   总被引:2,自引:0,他引:2  
设X为具有Opial条件的一致凸Banach空间,C为X的非空有界闭凸子集,T,S为C到自身的2个渐近非扩张映射且T和S有公共的不动点.本文主要考察了一种带误差的迭代逼近T和S有公共的不动点,在迭代参数{an},{bn},{cn},{a‘‘b},{b‘‘n},{c’n}的适当假设下,证明了所构造的带误差的迭代序列弱收敛于T和S的某个公共不动点,并考察了这种迭代序列的强收敛性。  相似文献   

11.
设E是一致凸Banach空间,C是E的非空闭凸子集,而且C也是E的非扩张收缩核,设{Ti}No=1:C→E是N个渐进拟非扩张非自映象,定义新的迭代序列{xn},该文证明了,若F=∩Ni=1F(Ti)≠φ且存在某Tl(1≤l≤N)是半紧的,则迭代序列{xn}强收敛于{Ti}Ni=1的公共不动点.该文结果也改进和推广了一些人的最新结果.  相似文献   

12.
设D是赋范空间X的一子集,T:DX是一非扩张映射.给定D中序列{xn}和两个实数序列{tn}和{sn}满足: 0≤tn≤t<1和∑∞n=1tn=∞; 0≤sn≤1和∑∞n=1sn<∞; xn+1=tnT(snTxn+(1-sn)xn+vn)+(1-tn)xn+un,n=1,2,3,…,其中{un}和{vn}是两个在X中的可合序列,且limn→∞t-1n‖un‖=0.证明了若{xn}有界,则limn→∞‖Txn-xn‖=0.并给出了保证{xn}弱和强收敛到T的不动点时,关于D,X和T的条件.  相似文献   

13.
设E为一致光滑的Banach空间且是一致凸的,C为E中的非空闭凸子集,T1,T2,…,TN:C→C是λ半压缩映象且为L-Lipschitzian映象,λ∈(0,1),公共不动点集非空,并且存在一个映象T∈{Ti:i∈I}是半紧的.{xn}是由x n+1=(1-an)xn+anTnxn确定的迭代序列,Tn=Tn mod ...  相似文献   

14.
在凸度量空间中,引入一类比渐近拟非扩张映射更加广泛的广义渐近拟非扩张型映射,并给出带误差修改的Ishikawa迭代序列收敛于广义渐近拟非扩张型映射不动点的充要条件:设X是一个完备凸度量空间,T∶X→X是一个广义渐近拟非扩张型映射,其渐近系数kn满足∑∞n=1kn< ∞,并且F(T)非空。假定{xn}n∞=1是带误差修改的Ishikawa迭代序列,在对参数的一定限制下,{xn}n∞=1收敛于T的不动点,当且仅当lim infn→∞d(xn,F(T))=0。  相似文献   

15.
设K是实p-一致凸Banach空间E中的非空闲凸子集,T是K到自身的一致Lipschit-zian映象,且F(T):={x∈K:Tx=x}≠φ.对任给的x0∈K,带误差的Ishikawa迭代程序生成序列{xn},在T是一致伪压缩映象的条件下,证明了‖xn-Txn‖→+0(n→∞).进一步,当T是全连续算子时,证明了{xn}强收敛到T的不动点.  相似文献   

16.
研究序列{xn}的收敛性,其中x0∈C,yn=βnTxn (1-βn)xn,xn 1=anTyn (1-an)x,n=0,1,2,…这里0αn,βn≤1,C是Banach空间中的闭凸子集,T是从C到自身的映射。  相似文献   

17.
设X为Banach空间,K为X的非空凸子集,且K+K K.设T:K→K为一致连续Φ-半压缩映射.设{αn}n∞=0和{βn}n∞=0为[0,1]中的2实数列,{un}n∞=0和{vn}n∞=0为K中序列并满足一定条件.如果{Tyn}有界,则带误差项的Ishikawa迭代序列{xn}n∞=0强收敛于方程T的唯一不动点.  相似文献   

18.
K是实Banach空间E中的非空闭凸子集,T1,T2,…,TN:K→K是N个一致Li-Lipshitz渐近伪压缩映象,{xn}是K中如下定义的迭代序列:{xn+1=(1-αn)xn+αnTikyn yn=(1-βn)xn+βnTixn n≥0其中,n=(k-1)N+i,i∈I={1,2,…,N}.在适当的条件下证明了以上迭代序列强收敛于T1,T2,…,TN的公共不动点.  相似文献   

19.
E是一实Banach空间,K是E的一非空闭凸子集.设f:K→K是一压缩映象,T1,T2…,TN∶K→K是具序列{kn}[1,+∞),lim kn=1 n→∞的有限簇一致L-Lipschitzian渐近伪压缩映象,且∩F(Ti)≠Φ from i=1 to N.设序列{xn}定义为xn+1=(1-αn-βn)xn+αnf(xx)+βnTrnnyn yn=(1-γn)xn+γnTrnnxn,n≥0其中{αn},{βn},{γn}[0,1],rn=n mod N.文章在一定条件下,用黏性逼近法证明了迭代序列{xn}强收敛于T1,T2,…,TN的公共不动点.该文结果推广和改进了一些文献的最新结果.  相似文献   

20.
有限簇非扩张非自映象的黏性逼近   总被引:2,自引:1,他引:1  
设E是一自反的Banach空间,具有E到E·的弱序列连续的正规对偶映象,K是E的非空闭凸子集而且是E的sunny非扩张收缩核.设f:K→K是一压缩映象,T1,T2,...,TN:K→E是一有限簇非扩张非自映象且∩Ni=1Fix(Ti)≠Ф.序列{xn}定义为xn+1=P(αnf(xn)+(1-αn)Tnyn),yn=P(βnxn+(1-βn)Tnxn), (A)n≥1,其中{αn},{βn}(∪)[0,1],P:E→K是一sunny非扩张保核收缩,Tn=Tn(modN).用黏性逼近方法证明了迭代序列{xn}强收敛于T1,T2,...,TN的公共不动点的充分必要条件,也推广和改进了一些文献的最新结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号