首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
This paper proposes a novel experimental approach to evaluate the formability for tube hydroforming under biaxial stretching through elliptical bulging. The idea comes from the hydraulic stretch-drawing tests with elliptical dies for the right hand side of forming limit curve (FLC). Based on the deformation theory and the classical Hosford yield criterion, an analytical model is constructed for the elliptical bulging of tube hydroforming. Then the novel experimental device is designed with five upper elliptical die inserts and one lower die insert used to produce ellipsoidal bulged domes and some experiments are performed. The linear strain paths in different strain states are verified and the right hand side of FLC for roll-formed QSTE340 seamed tube is determined through the proposed experimental approaches. Finally, a comparison between the theoretical results and experimental data is performed. The theoretical predictions show good agreement with the experimental results.  相似文献   

2.
工业铝合金汽车覆盖件的超塑成形研究   总被引:4,自引:0,他引:4  
采用工业铝合金 5 1 82就一款汽车上的前挡泥板零件进行了超塑成形的试验研究。根据零件的形状特点确定使用超塑气压胀形工艺 ,并进行了模具型腔曲面设计和模具结构设计。应用数值模拟的方法对型腔曲面设计进行了优化 ,使预测出成形零件所需的变形量处在材料的变形能力之内。最终的成形试验结果表明 ,成形工艺和模具设计合理可行。  相似文献   

3.
为了研究初始反胀高度(IRBH)、反胀压力(IRBP)和液室压力加载路径3个工艺参数对板料充液成形的影响规律,以不锈钢321材料为研究对象,进行板材充液成形工艺过程的分析。首先,利用数值模拟的方法,在有初始反胀(IRB)的充液成形基础上,研究了初始反胀高度与初始反胀压力的组合形式以及液室压力加载路径对制件成形的影响规律,然后分别研究了有无初始反胀的充液成形过程。最后,通过实验的方法进行验证。结果表明:当初始反胀高度为3.75 mm、初始反胀压力为2 MPa时,充液结束时板料的最大减薄率为4.803%,在所有结果中最小;无初始反胀时,零件壁厚最大减薄率为5%;当在充液拉深后期继续加大液室压力时,板料底部发生波动,出现二次变形,与此同时,板料最大减薄率增大。从而验证了合适的初始反胀高度和反胀压力可以减小制件壁厚的最大减薄率,液室压力加载路径不同,零件的壁厚分布也不同。  相似文献   

4.
The material properties for the analytical and numerical simulation in sheet metal processes, especially in tube hydroforming process, are generally obtained from the uniaxial tensile test of raw sheet material. However, the validation of the formability and reliability of the numerical simulation for the tube hydroforming process arises from the fact that the material characteristics of tubes are different from those of the raw sheet materials. In order to determine the most suitable material property of the tubular material for the evaluation of forming limit on the THF process, the uniaxial tensile test for the specimens of the raw sheet metal and the roll-formed tube and the free bulge test for the roll-formed tubular material are carried out in this paper. The forming limit curves are also derived using plastic instability based on three kinds of necking criteria, which are Hill’s local necking criterion for sheet and Swift’s diffuse necking criteria for sheet and tube, to describe and explain the forming limits for the roll-formed tubular material in the THF process. In order to acquire the informative data on the forming limit curves in the THF process, the loading condition of the free bulge test is controlled. The proper band from nearly necking initiation to nearly bursting initiation has been defined for the roll-formed tubular material in the THF process. It can be concluded that the flow stress of the tubular material should be determined from the actual free bulge test to find the practically valuable forming limit curve for the THF process.  相似文献   

5.
智能与控制在塑性加工制备与成形中的应用   总被引:2,自引:0,他引:2  
对材料制备与塑性加工方面的智能控制特点进行了介绍与分析。首先对钢铁、铜及铜合金管材连铸连轧过程控制加工特点进行了阐述 ,其次介绍了镁合金的“轧制 等通道角挤压 拉制”连续加工制备技术和镁合金薄板半固态双辊铸轧工艺。对于薄板增量加工成形技术 ,介绍了飞机整体壁板增量压弯技术、薄板单点无模增量成形技术和多点无模增量成形技术。讨论了薄板可动凹模液压成形技术、异型截面管件液压成形技术和细长杆件空间弯扭成形技术原理。最后对于微小件加工技术进行了简要介绍  相似文献   

6.
Discrete layer forming proposed in this study is a hydroforming process which can selectively deform the outer tube to a desired shape without any deformation of the inner tube by piercing small holes in the inner tube. A three-layered tube is assembled from inner, middle, and outer tubes, from either similar or dissimilar materials, and deforms simultaneously when internal pressure and axial feed are applied to the tube. In special working environments, multi-layered tubes with combined material properties, high strength, and corrosion resistance are required to satisfy conflicting performance requirements. The feasibility of proposed discrete layer forming process of three-layered tube was evaluated by a tube hydroforming experiment and process analysis was performed. An optimal loading path to prevent wrinkling around holes was developed by an analytical model and was experimentally verified. The results show that the proposed discrete layer forming process can be successfully applicable to hollow forming of non-axisymmetric multilayered tubes for structural purposes.  相似文献   

7.
Hydroforming of inhomogeneous sheet pairs with counterpressure   总被引:1,自引:0,他引:1  
Double sheet hydroforming is a technology which allows to manufacture lightweight hollow components with complex geometries in one forming operation. One major challenge in hydroforming regards the manufacturing of inhomogeneous double sheet parts, i.e., of components, where the two halves are made up of different materials or have a different initial thickness. The failure mechanisms taking place in this case are due to the different amount of draw-in of material in the die during the preforming, which causes the occurrence of wrinkling in the flange, and to the different bursting pressure of the two blanks during the successive calibrating stage. An innovative strategy is proposed, in which a counterpressure is applied at the outer surface of one of the two sheets in order to compensate the different behaviors of the two forming partners, allowing thus to exploit their forming potential.  相似文献   

8.
Tube hydroforming is a forming process where an inner pressure combined with axial feeding deforms the tube to the shape of a die cavity. One of the main concerns when designing such a process is to avoid burst pressure, i.e. the process state where the hardening of the material is unable to resist the increase in inner pressure and wall thickness reduction. The success of a hydroforming process strongly depends on the choice of process parameters, i.e. the combination of material feeding and inner pressure. Especially in hydroforming processes, where the free forming phase is substantial, the process is proved to be very sensitive to the inner pressure. By transforming the problem into a deformation controlled rather than a force controlled process, the results from the process parameter estimation become more reliable but on the other hand less intuitive. In this context, three distinct parameter estimation procedures are suggested. Firstly, a self feeding based procedure is proposed with the intention of being a fast method to be used as a first estimate of suitable process parameters. Secondly, an iterative optimization problem set up is presented. Thirdly, and finally, an adaptive simulation procedure based on process response approximations is proposed, which only requires a limited number of simulation runs.  相似文献   

9.
Reduction of weight and increase of corrosion resistance are among the advantageous applications of aluminum alloys in automotive industry. Producing complicated components with several parts as a uniform part not only increases their strength but also decreases the production sequences and costs. However, achieving this purpose requires sufficient formability of the material. Tube hydroforming is an alternative process to produce complex products. In this process, the higher the material formability the more uniform will be the thickness distribution. In this research, tube hydroforming of aluminum alloy (AA1050) at various temperatures has been investigated numerically to study temperature effect on thickness distribution of final product. Also a warm hydroforming set-up has been designed and manufactured to evaluate numerical results. According to numerical and experimental results in the case of free bulging, unlike the constrained bulging, increase of the process temperature causes more uniform thickness distribution and therefore increases the material formability.  相似文献   

10.
Loading path optimization of tube hydroforming process   总被引:3,自引:1,他引:3  
Optimization methods along with finite element simulations were utilized to determine the optimum loading paths for closed-die and T-joint tube hydroforming processes. The objective was to produce a part with minimum thickness variation while keeping the maximum effective stress below the material ultimate stress during the forming process. In the closed-die hydroforming, the intent was also to conform the tube to the die shape whereas in the T-joint design, maximum T-branch height was sought. It is shown that utilization of optimized loading paths yields a better conformance of the part to the die shape or leads to a higher bulge height. Finite element simulations also revealed that, in an optimized loading path, the majority of the axial feed needs to be provided after the tube material yields under the applied internal pressure. These results were validated by conducting experiments on aluminum tubes where a good correlation between the experimental results and simulations were obtained.  相似文献   

11.
Recently, low pressure tube hydroforming has emerged as a technology to reduce the weight of automotive body structures by allowing the implementation of advanced high strength steels and minimizing the number of process steps. In this study, a simplified analytical model based on a rigid, perfectly plastic material model was developed to determine the die closing force needed to form a simple geometry using the low pressure hydroforming process. The analytical solution developed was compared with experimental and numerical results; this demonstrated a reasonable accuracy of the model which will assist in the understanding of the basic principles governing the low pressure hydroforming process.  相似文献   

12.
针对某军机支叉管类零件的结构型面复杂、曲率变化大的特点,其传统的成形方式主要采用落压成形,在成形过程中易产生起皱、破裂和表面质量差等问题.因此,提出采用被动式充液成形来加工支叉管零件,并利用有限元软件ANSYS/LS-DYNA建立有限元分析模型,对其充液成形过程进行有限元仿真模拟,研究不同压边力对充液成形的影响,从模拟...  相似文献   

13.
The polymer injection forming process is a recent invention for producing plastic?Cmetal hybrids. It is a combination of injection molding and sheet metal hydroforming process in which polymer melt serves as a pressure medium. This paper presents the experimental investigations on the non-Newtonian nature of thermoplastic melt as pressure medium. The objective of this work is to identify the presence of non-hydrostatic pressure distribution within the cavity and its influence on the final shape of the formed sheet metal component. Experiments are conducted with center-gated injection mold under varying processing conditions. The development of localized cavity pressure during the process is recorded and evaluated against the final shape of formed sheet metal. It has been observed that higher injection rate, higher injection temperature, and higher melt flow index of the processed polymer is necessary for the uniform pressure distribution and subsequently uniform forming of the sheet metal.  相似文献   

14.
半滑动式液压胀形汽车桥壳的模具设计及成形   总被引:1,自引:0,他引:1  
提出了半滑动式液压胀形模具的设计原则,并针对某小型汽车桥壳设计了终胀形模具和两种结构方案的预胀形模具;使用ANSYS软件数值模拟桥壳的液压胀形成形过程,重点分析模具型腔对成形的影响,比较了两种预胀形模具对成形管坯的壁厚变化及成形性的影响;在普通液压机上试制出汽车桥壳样件。  相似文献   

15.
曲面形件拉延变形过程数值模拟   总被引:1,自引:0,他引:1  
运用有限元模拟软件MSC.Marc对不锈钢带凸缘半球面形件和抛物面形件进行了数值模拟研究.首先采用拉延成形方式对半球面形件和曲面形件进行数值模拟,模拟了它们在不同工艺参数下的成形过程.从模拟结果中分析应力、应变和材料厚度的分布与变化,分析了凹模圆角半径、凸模形状对拉延成形过程的影响,得出在拉延成形方式下,凹模圆角半径R=10 mm时成形性与成形质量最佳;为了比较不同成形工艺对曲面形件成形的影响,对半球面形件进行了胀形成形模拟,采用相同的分析方法得出,胀形时的变形程度较大,胀形后的材料厚度较薄,坯料没有增厚现象.  相似文献   

16.
1 INTRODUCTIONTheeffectofstressstatesonaxisymmetricsheetformabilityhasbeenstudiedundertheconditionofsolidmetalpunchforming [14 ] ,andtheeffectofblankholderpressure (BHP) ,frictioncoefficientandpunchconfigurationonthestressstateshasbeenob tained .Becauseofthedisadvantagesofsolid punchforming ,newformingtechnologyisneededtoim provethestressstatesofthesheetinformingprocessandtomeettherequirementofforminglow plastici ty ,complexshapeparts .Viscouspressureforming(VPF)isarecentlydevelopedfle…  相似文献   

17.
板料增量成形的研究进展   总被引:1,自引:1,他引:0  
板料增量成形是采用简单模具对板料进行逐次塑性加工的一种工艺,不需要专用的模具就可以成形较为复杂的零件,同时还具有成形力小、柔性高的特点,特别适合多品种小批量零件的生产方式,因此得到国内外学者的重视。本文重点从板料的增量压弯成形、增量拉深胀形、增量微成形3个方面对板料增量成形的发展进行综述,还对板料增量成形工艺的发展前景进行了展望,指出进行理论创新、开发新的模拟软件、探索新的成形方案、开发增量成形新设备是发展趋势。  相似文献   

18.
Based on the sidewall wrinkling phenomena in hydroforming of thin-walled Tee-joint, an analytical model for tube wrinkling under double side constraints was proposed to calculate the critical wrinkling stress. The effects of stress ratio, diameter-to-thickness ratio and tube material properties on critical condition of sidewall wrinkling were investigated. It is found that the middle of the main tube side wall is the most dangerous position for wrinkling within hydroforming of thin-walled Tee-joint. At a certain internal pressure, the critical wrinkling stress increases with increasing of ratio of hoop stress to axial stress and material strength coefficients, but decreases with increasing of work-hardening exponent and ratio of diameter to thickness. Through the analytical model combining FEM simulation, the critical wrinkling loading path according to the relation between axial feeding and internal pressure was obtained. Experimental results validates that wrinkle can be avoided if the pressure is above the critical wrinkling loading path, otherwise, wrinkle occurs. It is also verified that the analytical model of critical wrinkling stress is reasonable for the thin-walled Tee-joint hydroforming process.  相似文献   

19.
The gas pressure bulging of metal sheets has become an important forming method. As the bulging process progresses, significant thinning in the sheet material becomes obvious. A prior knowledge about non-uniform thinning in the product after forming helps the designer in the selection of initial blank thickness. This paper presents a simple analytical procedure for obtaining the thinning variation of a superplastically formed Ti alloy spherical dome. The procedure is validated with the existing measured data.  相似文献   

20.
管件液压成形技术及其进展   总被引:1,自引:0,他引:1  
管件液压成形技术属先进制造技术,因其具有众多优点,已在汽车行业得到广泛应用。简要介绍该技术的成形原理、优缺点及应用,从设备及模具、材料及成型性、工艺参数及失败模式、数值模拟及优化方法、预成形、摩擦与润滑等方面分析国内外的研究和应用状况,并指出该技术的发展趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号