首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
地形因素及围岩类别对偏压隧道的影响效应分析   总被引:1,自引:0,他引:1  
针对地形偏压隧道,综合考虑了围岩类别、横坡坡度、侧覆土厚和最大埋深等因素,利用正交试验法进行试验方案的优选,共选出25种正交试验方案进行弹塑性有限元数值模拟试验,然后将计算结果与现场实测值进行对比发现两者在规律上一致,最后进行直观分析和极差分析.通过对数值结果分析可知围岩类别的差异对地形偏压隧道的变形影响最为显著,其次为最大埋深.拱顶、仰拱以及拱腰的变形受侧覆土厚的变化影响较横坡坡度大,而拱脚则相反;结果也表明地形因素的变化对隧道靠近山体侧变形的影响略大于靠近沟谷侧的影响.同时发现侧覆土厚从5~35 m变化时偏压程度逐渐减弱,超过20 m后可认为偏压作用基本不存在;而对于横坡坡度而言,从20°~60°偏压程度随其逐渐增大而有所起伏,但总趋势增加;最大埋深达到30 m之后,两侧应力差基本不变化甚至有略微下降的趋势,说明随着埋深的增大,偏压程度基本稳定.  相似文献   

2.
为了研究层状围岩隧道开挖后围岩稳定性与层状岩体的层厚、倾角之间的关系,采用离散元分析软件UDEC,在不同倾角和层厚条件下,分析了层状围岩隧道开挖后围岩的变形规律和受力特征,研究了不同倾角、不同层厚对层状围岩隧道稳定性的影响.结果表明:当层厚和开挖跨度相同时,隧道围岩的竖向位移、水平位移和最大主应力随着结构面倾角的增大表现出先增大后减小的规律.当倾角和开挖跨度相同时,随着层厚的增加,隧道围岩竖向位移、水平位移和最大主应力均出现逐渐减小的趋势.  相似文献   

3.
根据隧道开挖与支护过程中围岩应力变形规律,提出"二次平衡"概念.基于浙江省境内一偏压公路隧道的设计、施工以及地质情况,采用有限元软件ADINA模拟CD法不同顺序开挖导坑的施工过程,对比分析地面、围岩位移以及初期支护和二次衬砌的最大主应力.结果表明:地面沉降以及围岩最大位移都与导坑开挖顺序有关.从埋深大的一侧开挖导坑比从另一侧开挖导坑初期支护最大主应力小21.6%,二次衬砌最大主应力小35%.拱底是支护结构的薄弱部位,在设计、施工时要引起足够的重视.最后经过综合分析,确定了从埋深大的一侧导坑开挖为优选方案,可为同类隧道的设计、施工和研究提供有益的借鉴和参考.  相似文献   

4.
以深圳地铁12号线2期工程松岗站与既有6号线折返线北侧暗挖通道为研究背景,通过FLAC3D有限元数值模拟和理论分析的方法研究了新意法施工条件下不同海相地层围岩级别、隧道埋置深度、隧道洞径、隧道掌子面预加固强度对隧道掌子面失稳模式及围岩变形规律。当隧道掌子面不进行预加固时,掌子面挤出位移随着隧道埋置深度的增加而增加;围岩等级越大,掌子面挤出位移随隧道埋深的变化越明显;当围岩等级为VI6时,隧道埋深在5 m到45 m,掌子面均发生了失稳现象;当隧道埋深取5 m、洞径取5.8 m时,其他固定参数不变;随着围岩内摩擦角、黏聚力、掌子面预加固深度的增大,隧道掌子面挤出位移逐渐减小。  相似文献   

5.
浅埋偏压隧道施工安全是隧道施工的常见问题.采用FLAC3D有限差分软件,针对地表倾角和埋深对隧道塑性区范围的影响,分为两组不同工况的隧道开挖进行了数值分析.结果表明:随着地表倾角增加,左边墙和左拱脚的水平位移逐渐减小,当地表倾角为35°时位移值为负,出现了向左的位移,右拱腰的竖向位移增大趋势要大于左拱腰,随着隧道埋深的增加,位移的大小随埋深的增大均逐渐增加;剪应力主要集中在左右拱脚和左右边墙处,塑性区首先出现在这些区域,并随着剪应力的增加范围逐渐增大.  相似文献   

6.
增湿条件下,膨胀土的强度会降低并产生膨胀力,在两者的共同作用下,膨胀土隧道围岩稳定性会严重降低,有必要研究增湿条件下膨胀土隧道围岩的变形和衬砌受力。采用室内试验和数值模拟的方法对膨胀土隧道围岩稳定性进行研究,对不同含水率的重塑膨胀土进行剪切试验,得出摩擦角、黏聚力与含水率的拟合关系式,运用ABAQUS有限元软件对膨胀土隧道开挖过程进行仿真分析,并利用温度场模块模拟隧道围岩增湿膨胀,得出隧道增湿前后应力与位移的变化规律,同时设计正交试验,分析各因素对膨胀土浅埋隧道稳定性的影响。结果表明:围岩增湿之后,围岩拱腰处的应力值增加明显,拱顶和拱底处应力值减小;衬砌的拱底处纵向位移值增加,拱顶处纵向位移值减小。通过设计正交试验,采用极差和方差分析得到对膨胀土浅埋隧道围岩稳定性影响最大的因素为增湿强度,其次为覆跨比、膨胀厚度和膨胀系数。  相似文献   

7.
通过地震力偏角的旋转,在考虑水平、竖向地震综合作用下,采用拟静力法提出了黏聚力和内摩擦角分算的浅埋偏压隧道围岩压力解,通过与规范及既有文献比较,验证了计算结果的合理性,并探讨了浅埋偏压隧道围岩压力的影响因素.结果表明:竖向地震力较小时,随水平地震效应增加,围岩压力、浅埋侧下滑力及深埋侧压力呈上升趋势,深埋侧下滑力及浅埋侧压力呈下降趋势;随竖向地震力增加,围岩压力先下降后上升;内摩擦角提高及黏聚力降低,均会引起围岩压力明显提高,同时双侧下滑力及压力有所降低.另外当地震力较小时,围岩级别越高,围岩压力、双侧下滑力和正压力值越小;随地震力增加,所得结果有不同程度的突变.  相似文献   

8.
隧道洞口大都会面临围岩破碎、浅埋和偏压等不良地质地形情况,现行规范只给出了偏压隧道衬砌荷载的计算方法。对于破碎围岩浅埋偏压隧道,根据现场情况及实测的衬砌受力和变形特征表明其与规范假定不同,不宜直接利用规范方法。通过工程实例分析及隧道三维数值分析结果提出了浅埋偏压隧道破碎围岩的破坏模式,即隧道开挖后深埋侧岩体滑塌下落挤压支护结构使其向外侧变形,从而外侧支护受到被动土压力。根据提出的破坏模式,将隧道开挖后围岩主要分为滑塌区和被动区,在此基础上利用极限平衡法推导出了衬砌荷载的计算公式。将计算得到的结果与现场实测值对比发现,对于围岩极其破碎且存在较严重偏压的浅埋隧道工程,提出的计算方法比采用规范方法更接近实际情况。  相似文献   

9.
随着重载铁路的快速发展,既有重载列车振动荷载对下穿新建隧道稳定性的影响受到关注.采用激振函数模拟重载列车竖向振动荷载,基于有限差分法分析不同行车方式、隧道埋深、开挖进尺时隧道围岩的动力响应特征.计算结果表明:隧道拱顶、拱腰和拱脚运动趋势近似于简谐振动,峰值位移和峰值加速度由大至小依次为拱顶、拱腰和拱脚;重载列车双线行驶情况下围岩变形和振动均大于单线行驶;随着隧道埋深的增加,监测点位移和加速度响应特征逐渐减弱;新建隧道开挖至交叉点时监测点位移和加速度均处于最大值,在掌子面与交叉点距离相同的情况下,掌子面未通过交叉点时监测点位移和加速度响应特征均小于掌子面通过交叉点的情况.  相似文献   

10.
为了研究浅埋偏压条件下节理倾角对隧道围岩变形的影响,选择地形偏压的浅埋隧道为研究对象,采用遍布节理模型来模拟岩层的各向异性特征,分7组不同节理倾角工况对地形偏压隧道进行数值模拟,分析不同工况下隧道围岩的变形量和塑性区,结果表明:随着节理倾角的增大,隧道垂直方向的变形表现出先减小后增大的趋势,水平方向的变形表现出先增大后减小的趋势;当节理倾角为15°时,隧道垂直方向的变形量和水平方向的变形量最小;当节理倾角为60°时,隧道水平方向的变形量最大.随着节理倾角改变,围岩塑性区范围随之发生变化,当节理倾角为15°时,隧道围岩塑性区范围最小,隧道最为稳定.  相似文献   

11.
针对石红高速大中山1#双连拱浅埋偏压隧道,选择典型断面,埋设监控量测设备对隧道施工过程中围岩的变形和支护结构受力进行适时的监测,对监控量测的数据进行分析处理,根据监控量测的信息对隧道施工过程中出现的围岩变形和支护受力进行深入分析,得出了浅埋偏压隧道在偏压作用下和施工扰动下的受力特征和变形特性。结果表明,隧道在偏压作用下有向浅埋侧偏移的趋势,在进行隧道开挖过程中,减少偏压侧不平衡推力对于保证隧道的安全稳定有及其重要作用。  相似文献   

12.
为了研究隧道埋深和施工方法对二衬支护时机的影响,以广梧高速公路牛车顶隧道为工程背景,建立数值计算模型,分别改变隧道埋深和施工方法,得到相应的隧道二衬支护时机.结果表明:通过数值计算,可定量得到二衬及掌子面之间的允许距离和埋深的关系;当埋深较小时,二衬与掌子面的允许距离随着埋深的增加而增加;当埋深超过某一限值时,隧道二衬与掌子面的允许距离基本不变;开挖工法对二衬与掌子面间的允许距离影响比较显著,而对仰拱与掌子面的允许距离影响很小.随着开挖断面分部的增加,开挖对围岩的扰动减小,因而可以适当延缓构筑二衬时机.若选取Ⅲ级围岩中的全断面开挖法作为参考基准,则围岩中二衬与掌子面的允许距离将由于选择不同工法需进行修正,相应的修正值为:全断面法1.0,上下台阶法和中隔壁法均为1.5.  相似文献   

13.
研究隧道施工引起上覆不同深度处的地层沉降变形对分析城市地铁隧道施工对邻近建(构)物的影响意义重大.考虑隧道施工地层扰动变形由下向上逐渐变形的特点,基于Peck法的沉降槽宽度与随机介质理论中地表影响半径关系,由下向上逐步分析隧道上覆各埋深地层的沉降变形;考虑各地层土性质、厚度和隧道半径对沉降槽宽度造成的影响,求得沉降槽宽度在地层各深度处的表达式;讨论了隧道上覆地层土性参数、成层土厚度和隧道开挖半径对地层沉降变形的影响,分析表明:地层的沉降槽宽度主要取决于该地层与隧道开挖面之间的覆土性质和厚度,与隧道半径也有很大关系;地层土的性质、厚度和隧道半径决定了地层的沉降范围,而地层损失决定了地层沉降量大小.隧道半径越大,沉降槽宽度越大;覆土的内摩擦角越小,沉降槽的宽度越小,地层沉降曲线越窄.  相似文献   

14.
运用ABAQUS有限元软件,对下卧地铁上、下行线隧道顶、侧、底面的水平和竖向位移进行了三维数值模拟计算和对比分析,结果表明:基坑开挖对邻近既有下卧隧道的变形影响明显,位于基坑中部位置以下的隧道竖向位移相对较大,靠近基坑边缘位置的隧道水平位移相对较大;同一隧道顶部位置的竖向位移大于侧面和底部的位移,隧道侧面的水平位移大于顶、底部的位移;受基坑开挖卸荷的影响,隧道的自身变形表现为竖向直径增大,水平向直径减小。对位于既有隧道上方的基坑开挖要引起关注。  相似文献   

15.
浅埋偏压会对隧道围岩稳定和支护结构产生很大影响,开挖过程中极易发生垮塌。利用FLAC3D 程序对烟海高速公路解家河隧道穿越浅埋偏压洞段采用的施工过程进行仿真分析,得到解家河隧道在采用不同开挖工序时各阶段围岩及支护结构的变形和应力变化情况。结合现场监测断面的量测成果,经过数据整理和计算得到解家河隧道浅埋偏压洞段围岩及支护的受力特征,对隧道围岩稳定性进行分析判断。所得结论为解家河隧道顺利施工提供了可靠依据,可为具有类似地质、地形情况的隧道设计和施工提供技术参考。  相似文献   

16.
某隧道在建设过程中,由于上覆荷载大,围岩强度较低,围岩出现了较大变形,严重影响隧道安全,需对隧道进行修复.根据实际情况设计了反增加初期支护厚度和增加初期支护厚度并加固围岩2种修复方案,并依据实测地形分别建立了有限元计算模型,采用不同的工况模拟了隧道修复方案.对计算结果从围岩位移、应力、塑性区发展以及衬砌内力等方面进行了对比和分析.研究结果表明,围岩注浆对软岩隧道的围岩变形、围岩应力的控制效果优于仅采用增加初衬厚度的修复方案.此研究对类似隧道修复具有借鉴意义.  相似文献   

17.
基坑开挖对邻近既有下卧隧道的影响分析   总被引:1,自引:1,他引:0  
随着城市化的发展,骑跨于邻近地铁隧道之上的基坑开挖工程越来越多,在基坑开挖过程中如何更好的控制对既有隧道变形的影响是一个亟待解决的问题。本文运用ABAQUS有限元软件,对下卧地铁上、下行线隧道顶、侧、底面的水平和竖向位移进行了三维数值模拟计算和对比分析,结果表明:基坑开挖对邻近既有下卧隧道的变形影响明显,位于基坑中部位置以下的隧道竖向位移相对较大,靠近基坑边缘位置的隧道水平位移相对较大;同一隧道顶部位置的竖向位移大于侧面和底部的位移,隧道侧面的水平位移大于顶、底部的位移;受基坑开挖卸荷的影响,隧道的自身变形表现为竖向直径增大,水平向直径减小。对位于既有隧道上方的基坑开挖要引起关注。  相似文献   

18.
为揭示浅埋偏压小净距隧道施工对隧道围岩的扰动规律,以义东高速防军隧道为工程背景,基于有限元软件MIDAS GTS NX建立隧道进口小净距段三维模型并分析其空间效应,采用预留核心土法模拟隧道洞口段动态施工过程,研究了隧道围岩位移场和应力场演化特征与规律。结果表明:隧道开挖后,地表沉降呈现明显的非对称现象且先行洞和后行洞开挖前期对地表沉降位移影响较大;隧道开挖面空间约束的作用范围为开挖面前后1~1.5倍洞径;开挖面前后0.5倍洞径范围为强影响区,0.5~1倍洞径范围为弱影响区;后行洞开挖对围岩主应力偏压比影响较小,后行洞开挖后拱脚位置受偏压影响较大,隧道施工时应及时封闭支护结构,还应对应力集中位置重点监测。  相似文献   

19.
采用两段法研究了盾构隧道下穿管道施工引起的管道水平变形特性,在第1阶段改进了Loganathan公式,求得盾构隧道以任意角度下穿管道施工引起的管道轴线处土体水平位移,第2阶段采用Vlasov模型模拟管土相互作用,并求得管道水平位移解析解。通过与工程监测数据及有限元计算结果的对比,验证了方法的正确性,并进一步分析了管道与隧道夹角、管道直径以及隧道埋深对管道变形的影响。结果表明:盾构隧道斜下穿管道施工时,隧道与管道相交角度的大小对管道水平位移造成的影响显著,随着夹角的减小,管道的水平位移逐渐增加;当管道与隧道相交角度较小时,盾构隧道开挖引起的管道水平位移相对管道竖向沉降不可被忽略;随着管道直径的增大、隧道埋深的增加,盾构隧道斜交下穿管道施工引起的邻近管道变形均减弱。  相似文献   

20.
为研究软弱破碎围岩浅埋连拱隧道施工过程中围岩变形特性,依托陕北某连拱隧道实际工程,通过现场布设监测仪器系统开展了拱顶沉降、围岩变形长期测试,获得了随施工过程拱顶沉降及围岩径向变形规律。结果表明:地表沉降近似于Peck沉降曲线,越靠近隧道中心地表沉降越大,最大沉降值产生于左线隧道开挖落底后,约为12.1 mm;拱顶沉降沿隧道纵向变化规律为:中导洞>正洞>左右侧导洞,中导洞表现为拱顶下沉,侧导洞则是水平收敛,上台阶施工因未临时仰拱封底而其收敛变形显著大于下台阶施工;随距隧道壁面距离增加,测点累计变形量逐渐减小,K21+970测试断面围岩松动区约2 m,因测线布置限制,K21+970测试断面松动区超过4 m。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号