首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A numerical computation to analyze the heat and mass transfer mechanism of a magnetohydrodynamic radiative Casson fluid flow over a wedge in the presence of Joule heating, viscous dissipation, and chemical reaction is carried out in this study. The flow-governing partial differential equations are transformed as ordinary differential equations by relevant similarity transformations and subsequently resolved by Runge–Kutta numerical approach with a shooting technique. The characteristics of momentum, thermal, and concentration border layers due to various influencing parameters are graphically outlined and numerically computed by MATLAB software. We present comparative solutions to construe the relative outcomes of Casson fluid versus Newtonian fluid. Computational outcomes of friction factor and Nusselt and Sherwood numbers are tabulated with suitable interpretations. An increase in skin friction values is noted due to an increment in the thermal Grashof number, whereas a decrease is observed due to the chemical reaction parameter. The Casson fluid displays a superior heat transfer mechanism than the Newtonian fluid. Obtained outcomes are in good agreement with the prevailing literature in the limiting case.  相似文献   

2.
A theoretical and numerical study of natural convection of two‐dimensional laminar incompressible flow in a semi‐trapezoidal porous enclosure in the presence of thermal radiation is conducted. The semi‐trapezoidal enclosure has an inclined left wall that in addition to the right vertical wall is maintained at a constant temperature, whereas the remaining (horizontal) walls are adiabatic. The Darcy‐Brinkman isotropic model is utilized. The governing partial differential equations are transformed using a vorticity stream function and nondimensional quantities and the resulting governing nonlinear dimensionless equations are solved using the finite difference method with incremental steps. The impacts of the different model parameters (Rayleigh number [Ra], Darcy number [Da], and radiation parameter [Rd]) on the thermofluid characteristics are studied in detail. The computations show that convective heat transfer is enhanced with the greater Darcy parameter (permeability). The flow is accelerated with the increasing buoyancy effect (Rayleigh number) and heat transfer is also increased with a greater radiative flux. The present numerical simulations are more relevant to hybrid porous media solar collectors.  相似文献   

3.
An analysis has been carried out to obtain the nonlinear MHD flow with heat and mass transfer characteristics of an incompressible, viscous, electrically conducting and Boussinesq fluid on a vertical stretching surface with chemical reaction and thermal stratification effects. An approximate numerical solution for the flow problem has been obtained by solving the governing equations using numerical technique. A magnetic field is applied transversely to the direction of the flow. Adopting the similarity transformation, governing nonlinear partial differential equations of the problem are transformed to nonlinear ordinary differential equations. Then the numerical solution of the problem is derived using Gill method, for different values of the dimensionless parameters. The results obtained show that the flow field is influenced appreciably by the presence of thermal stratification, chemical reaction and magnetic field.  相似文献   

4.
The free convective flow of an incompressible viscous fluid over an isothermal vertical cone with variable viscosity and variable thermal conductivity is examined in the presence of the Soret and Dufour effects. As thermal and solutal boundary conditions at the cone's surface, the constant temperature and concentration (WTC) and constant heat and mass flux (HMF) cases are taken into account. The successive linearization method is applied to linearize a system of nonlinear differential equations that describes the flow under investigation. The numerical solution for the resulting linear equations is attained by means of the Chebyshev spectral method. The obtained numerical results are compared and found to be in good agreement with previously published results. The impact of significant parameters on the heat and mass transfer rates is evaluated and presented graphically for the WTC and HMF situations. In both cases, the Soret number increases the skin friction coefficient and rate of heat transfer while decreasing the Sherwood number. With an increase in the Dufour parameter, the coefficient of skin friction and Sherwood numbers increase while the heat transmission rate decreases.  相似文献   

5.
This article presents the theoretical study of the effects of suction/injection and nonlinear thermal radiation on boundary layer flow near a vertical porous plate. The importance of the convective boundary condition as regards the heat transfer rate is taken into account. The coupled nonlinear boundary layer equations are translated into a set of ordinary differential equations via a similarity transformation. The consequences of the active parameters like the suction parameter, injection parameter, convective heat transfer parameter, nonlinear thermal radiation parameters, and Grashof number dictating the flow transport are examined. The numerical result obtained shows that with suction/injection, the heat transfer rate could be increased with nonlinear thermal radiation parameter augment whereas decays with the convective heat transfer parameter and Grashof number. In the presence of suction/injection, the wall shear stress generally increases with nonlinear thermal radiation parameter, convective heat transfer parameter, and Grashof number. The suction has an increasing effect on Nusselt number and shear stress whereas a decreasing effect on Nusselt number and skin friction is seen with injection augment. The nonlinear thermal radiation is an increasing function of the temperature gradient far away from the plate whereas a decreasing function near the porous plate.  相似文献   

6.
A two-dimensional mathematical model is presented for the laminar heat and mass transfer of an electrically-conducting, heat generating/absorbing fluid past a perforated horizontal surface in the presence of viscous and Joule (Ohmic) heating. The Talbot–Cheng–Scheffer–Willis formulation (1980) is used to introduce a thermophoretic coefficient into the concentration boundary layer equation. The governing partial differential equations are non-dimensionalized and transformed into a system of nonlinear ordinary differential similarity equations, in a single independent variable, η. The resulting coupled, nonlinear equations are solved under appropriate transformed boundary conditions using the Network Simulation Method. Computations are performed for a wide range of the governing flow parameters, viz Prandtl number, thermophoretic coefficient (a function of Knudsen number), Eckert number (viscous heating effect), thermal conductivity parameter, heat absorption/generation parameter, wall transpiration parameter, Hartmann number and Schmidt number. The numerical details are discussed with relevant applications. Excellent correlation is achieved with earlier studies due to White (1974) and Chamkha and Issa (2000). The present problem finds applications in optical fiber fabrication, aerosol filter precipitators, particle deposition on hydronautical blades, semiconductor wafer design, thermo-electronics and nuclear hazards.  相似文献   

7.
In this paper the flow of a power-law fluid due to a linearly stretching sheet and heat transfer characteristics using variable thermal conductivity is studied in the presence of a non-uniform heat source/sink. The thermal conductivity is assumed to vary as a linear function of temperature. The similarity transformation is used to convert the governing partial differential equations of flow and heat transfer into a set of non-linear ordinary differential equations. The Keller box method is used to find the solution of the boundary value problem. The effect of power-law index, Chandrasekhar number, Prandtl number, non-uniform heat source/sink parameters and variable thermal conductivity parameter on the dynamics is analyzed. The skin friction and heat transfer coefficients are tabulated for a range of values of said parameters.  相似文献   

8.
The present study is devoted to the flow and heat transfer analysis of the hyperbolic tangent fluid through a stretching sheet by considering the effect of thermal radiation in addition to an applied transverse magnetic field, as well as thermal and velocity slip conditions. The Lie group analysis technique has been utilized for establishing similarity transformations, which effectively transform the governing equations to a system of nonlinear ordinary differential equations (ODEs). These ODEs are numerically solved by utilizing the shooting method. The heat transfer properties and flow features under the influence of various physical parameters are also studied. We noted that by increasing the thermal radiation parameter, the temperature profile increases and also the thermal boundary layer thickens. Furthermore, it is deduced that rising the thermal radiation parameter reduces the local Nusselt number. Moreover, the numerical results obtained are in agreement with the existing results in the literature.  相似文献   

9.
The aim of the present paper is to investigate the Soret effect due to mixed convection on unsteady magnetohydrodynamics flow past a semi-infinite vertical permeable moving plate in the presence of thermal radiation, heat absorption, and homogenous chemical reaction subjected to variable suction. The plate is assumed to be embedded in a uniform porous medium and moves with a constant velocity in the flow direction in the presence of a transverse magnetic field. The equations governing the flow are transformed into a system of nonlinear ordinary differential equations by using the perturbation technique. Graphical results for the velocity distribution, temperature distribution, and concentration distribution based on the numerical solutions are presented and discussed. Also, the effects of various parameters on the skin-friction coefficient and the rate of heat transfer in the form of Nusselt number, and rate of mass transfer in the form of Sherwood number at the surface are discussed. Velocity distribution is observed to increase with an increase in Soret number and in the presence of permeability, whereas it shows reverse effects in the case of the aligned magnetic field, inclined parameter, heat absorption coefficient, magnetic parameter, radiation parameter, and chemical reaction parameter.  相似文献   

10.
The influence of temperature-dependent fluid properties on the hydro-magnetic flow and heat transfer over a stretching surface is studied. The stretching velocity and the transverse magnetic field are assumed to vary as a power of the distance from the origin. It is assumed that the fluid viscosity and the thermal conductivity vary as an inverse function and linear function of temperature, respectively. Using the similarity transformation, the governing coupled non-linear partial differential equations are transformed into coupled non-linear ordinary differential equations and are solved numerically by the Keller–Box method. The governing equations of the problem show that the flow and heat transfer characteristics depend on five parameters, namely the stretching parameter, viscosity parameter, magnetic parameter, variable thermal conductivity parameter, and the Prandtl number. The numerical values obtained for the velocity, temperature, skin friction, and the Nusselt number are presented through graphs and tables for several sets of values of the parameters. The effects of the parameters on the flow and heat transfer characteristics are discussed.  相似文献   

11.
This paper analyzes heat transfer and fluid flow of natural convection in an inclined square enclosure filled with different types of nanofluids having various shapes of nanoparticles in the presence of oriented magnetic field. The Galerkin weighted residual finite element method has been employed to solve the governing non-dimensional partial differential equations. In the numerical simulations, water, ethylene glycol, and engine oil containing copper, alumina, titanium dioxide nanoparticles are considered. The effects of model parameters such as Rayleigh number, Hartmann number, nanoparticles volume fraction, magnetic field inclination angle, geometry inclination angle on the fluid flow and heat transfer are investigated. The results indicate that increment of the Rayleigh number and nanoparticle volume fraction increase the heat transfer rate in a significant way, whereas, increment of the Hartmann number decreases the overall heat transfer rate. It is also observed that a blade shape nanoparticle gives higher heat transfer rate compared to other shapes of nanoparticles. The critical geometry inclination angle at which the maximum heat transfer rate is achieved depends on the nanoparticle volume fraction as well as on the magnetic field orientation. These results are new and have direct applications in solar thermal collectors and thermal insulator of buildings.  相似文献   

12.
An analysis has been carried out to investigate the analytical solution to the flow and heat transfer characteristics of a viscous flow over a stretching sheet in the presence of second‐order slip in flow. The governing partial differential equations of flow and heat transfer are converted into non‐linear ordinary differential equations by using suitable similarity transformations. The exact solution of momentum equation is assumed in exponential form and analytical solutions of heat transfer for both PST and PHF cases are obtained by the power series method in terms of Kummer's hypergeometric function. The temperature profiles are drawn for different governing parameters. The numerical values of wall temperature gradient and wall temperature are compared with earlier numerical results which have a good agreement. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library (wileyonlinelibrary.com/journal/htj). DOI 10.1002/htj.21044  相似文献   

13.
This study focuses on studying the impact of multiple slip effects on the hydromagnetic Carreau nanofluid flow over an elongating cylinder considering a linear heat source and exponential space-based heat source. Suitable transformations are used in converting the highly nonlinear system of partial differential equations governing the flow into a system of ordinary differential equations and hence resolved using the Runge–Kutta method of order four coupled with the shooting method. BVP5C and RKF45 are used to compare the numerical accuracy and an excellent agreement is noted. The parallel effect of parameters on Nusselt number is studied using surface plots and the corresponding effects are scrutinized using multiple linear regression. It is observed that the linear heat source parameter, thermal slip parameter and exponential space-based heat source parameter demote the heat transfer rate. The consequence of different parameters on drag coefficient and mass transfer are quantified using a linear regression slope.  相似文献   

14.
This article addresses an investigation of the entropy analysis of Williamson nanofluid flow in the presence of gyrotactic microorganisms by considering variable viscosity and thermal conductivity over a convectively heated bidirectionally stretchable surface. Heat and mass transfer phenomena have been incorporated by taking into account the thermal radiation, heat source or sink, viscous dissipation, Brownian motion, and thermophoretic effects. The representing equations are nonlinear coupled partial differential equations and these equations are shaped into a set of ordinary differential equations via a suitable similarity transformation. The arising set of ordinary differential equations was then worked out by adopting a well-known scheme, namely the shooting method along with the Runge-Kutta-Felberge integration technique. The effects of flow and heat transfer controlling parameters on the solution variables are depicted and analyzed through the graphical presentation. The survey finds that magnifying viscosity parameter, Weissenberg number representing the non-Newtonian Williamson parameter cause to retard the velocity field in both the directions and thermal conductivity parameter causes to reduce fluid temperature. The study also recognizes that enhancing magnetic parameters and thermal conductivity parameters slow down the heat transfer rate. The entropy production of the system is estimated through the Bejan number. It is noticeable that the Bejan number is eminently dependent on the heat generation parameter, thermal radiation parameter, viscosity parameter, thermal conductivity parameter, and Biot number. The skillful accomplishment of the present heat and mass transfer system is achieved through the exteriorized choice of the pertinent parameters.  相似文献   

15.
In this study, the aim is to find the numerical solutions of steady, two-dimensional, incompressible, viscous, electrically conducting magnetohydrodynamic (MHD) boundary-layer nanofluid flow towards a vertical cone in the presence of thermal diffusion, diffusion thermo, thermophoresis, and Brownian motion effects subject to porous medium and convective boundary condition. For this investigation, the method of similarity transformations is used for the objective of converting nonlinear partial differential equations into the system of ordinary differential equations. Approximate solutions are obtained using a numerical method of the Runge–Kutta method with the shooting technique for the flow, heat, and mass transfer equations together with boundary conditions. For this flow, the impact of various engineering parameters on MHD, thermal, and solutal boundary layers is investigated and the results are displayed graphically. In addition, the numerical values of the local skin-friction coefficient, rate of heat transfer, and rate of mass transfer coefficients are calculated, and the results are presented numerically. Finally, the comparison with previously published work is made and found in good agreement.  相似文献   

16.
The effects of viscous dissipation, non-uniform heat source/sink, magnetic field, and thermal radiation on heat transfer characteristics of a thin liquid film flow over an unsteady stretching sheet are analyzed. A similarity transformation is used to reduce the governing time dependent momentum and energy equations into non-linear ordinary differential equations. The resulting differential equations with the appropriate boundary conditions are solved by an efficient shooting algorithm with fourth order Runge–Kutta technique. The effects of the physical parameters on the flow and heat transfer characteristics are presented through graphs and analyzed. The numerical results for the wall temperature gradient (Nusselt number) are calculated and presented through tables. Also, the effects of the physical parameters on the heat transfer characteristics are brought out: suggestions are made for efficient cooling. Furthermore, the limiting cases are obtained and are found to be in good agreement with the previously published results.  相似文献   

17.
The purpose of this paper is to investigate a numerical analysis for the flow and heat transfer in a viscous fluid over a nonlinear stretching sheet utilizing nanofluid. The governing partial differential equations are converted into highly nonlinear ordinary differential equations by a similarity transformation. Different water-based nanofluids containing Cu, Ag, CuO, Al2O3, and TiO2 are considered in our problem. Furthermore, four different models of nanofluid based on different formulas for thermal conductivity and dynamic viscosity on the flow and heat transfer characteristics are discussed. The variations of dimensionless surface temperature, dimensionless surface temperature gradient as well as the flow and heat transfer characteristics with the governing parameters are graphed and tabulated. Comparison with published results for pure fluid flow is presented and it is found to be in excellent agreement.  相似文献   

18.
This study is concerned with the stagnation point flow and heat transfer over an exponential stretching sheet via an approximate analytical method known as optimal homotopy asymptotic method (OHAM). The governing partial differential equations are converted into ordinary nonlinear differential equations using similarity transformations available in the literature. The heat transfer problem is modeled using two‐point convective boundary condition. These equations are then solved using the OHAM approach. The effects of controlling parameters on the dimensionless velocity, temperature, friction factor, and heat transfer rate are analyzed and discussed through graphs and tables. It is found that the OHAM results match well with numerical results obtained by Runge–Kutta Fehlberg fourth‐fifth order method for different assigned values of parameters. The rate of heat transfer increases with the stretching parameter. It is also found that the stretching parameter reduces the hydrodynamic boundary layer thickness whereas the Prandtl number reduces the thermal boundary layer thickness.  相似文献   

19.
The steady laminar flow and heat transfer of an incompressible, electrically conducting, power law non-Newtonian fluids in a rectangular duct are studied in the presence of an external uniform magnetic field. The momentum and energy equations are solved iteratively using a finite difference method. Two cases of the thermal boundary conditions are considered; (1) T thermal boundary condition “constant temperature at the wall” and (2) H2 thermal boundary condition “constant heat flux at the wall”. The viscous and Joule dissipations are taken into consideration in the energy equation. A numerical solution for the governing partial differential equations is developed and the influence of the magnetic field on the velocity distribution, the friction factor and the average Nusselt number are discussed.  相似文献   

20.
In this work, we explore the unsteady squeezing flow and heat transfer of nanofluid between two parallel disks in which one of the disks is penetrable and the other is stretchable/shrinkable, in the presence of thermal radiation and heat source impacts, and considering the Cattaneo–Christov heat flux model instead of the more conventional Fourier's law of heat conduction. A similarity transformation is utilized to transmute the governing momentum and energy equations into nonlinear ordinary differential equations with the proper boundary conditions. The achieved nonlinear ordinary differential equations are solved by the Duan–Rach Approach (DRA). This method modifies the standard Adomian Decomposition Method by evaluating the inverse operators at the boundary conditions directly. The impacts of diverse active parameters, such as the suction/injection parameter, the solid volume fraction, the heat source parameter, the thermal relaxation parameter, and the radiation parameter on flow and heat transfer traits are examined. In addition, the value of the Nusselt number is calculated and portrayed through figures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号