首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Six prenylated flavones, including one new compound, were isolated and identified from the stem bark extracts of Artocarpus altilis. The new prenylated flavone hydroxyartocarpin (1) was characterized as 3-(γ,γ-dimethylallyl)-6-isopentenyl-5,8,2′,4′-tetrahydroxy-7-methoxyflavone and the known compounds were artocarpin (2), morusin (3), cycloartobiloxanthone (4), cycloartocarpin A (5) and artoindonesianin V (6). The structures of the compounds were determined by spectroscopic methods (IR, MS, 1H-NMR and 13C-NMR) and comparison with published data for the known compounds.  相似文献   

2.
A new lignan, (7R,7′R,8R,8′R)-8-hydroxypinoresinol 8-O-β-D-glucopyranoside 4′-methyl ether (7), was isolated from the flowers of Osmanthus fragrans var. aurantiacus along with six known lignans: (+)-phillygenin (1), phillyrin (2), (−)-phillygenin (3), (−)-epipinoresinol-β-D-glucoside (4), taxiresinol (5), and (−)-olivil (6). The structure of the new compound was elucidated on the basis of 1D- and 2D-NMR spectroscopic analysis and specific rotation data. The compounds isolated from the flowers of O. fragrans var. aurantiacus were evaluated for inhibitory activities on nitric oxide production in lipopolysaccharide-stimulated macrophage RAW 264.7 cells. (+)-Phillygenin (1), phillyrin (2), and (−)-phillygenin (3) exerted the strongest inhibitory activities on NO production with IC50 values of 25.5, 18.9, and 25.5 μM, respectively. These compounds may prove beneficial in the development of natural agents for prevention and treatment of inflammatory diseases.  相似文献   

3.
Young and mature Artemisia princeps var. orientalis (APO, Compositae) are used as a health food and a medicinal plant, respectively, in Korea. Here, we identified the in vitro potent peroxynitrite (ONOO)-scavenging effect (IC50, 0.26 μg/mL) of the components from the EtOAc fraction. Octadecylsilane column chromatography on the EtOAc fraction yielded two caffeoylquinic acid compounds, 3,5-di-O-caffeoyl-muco-quinic acid (1) and methyl 4,5-di-O-caffeoylquinate (2) by NMR spectroscopic data, which have not been reported before from APO. The IC50 values of compounds 1 and 2 were 0.18 ± 0.01 μg/mL and 0.12 ± 0.00 μg/mL, respectively, lower than that of the positive control (L-penicillamine). HPLC data indicated that young APO (1: 30.3 mg/g dried weight, 2: 27.7 mg/g) contained considerably higher quantities of the two caffeoylquinic acids than mature APO (1: 1.77 mg/g dried weight, 2: 4.10 mg/g).  相似文献   

4.
A novel gallate of tannin, (−)-epigallocatechin-(2β→O→7′,4β→8′)-epicatechin-3′-O-gallate (8), together with (−)-epicatechin-3-O-gallate (4), (−)-epigallocatechin (5), (−)-epigallocatechin-3-O-gallate (6), and (+)-gallocatechin-(4α→8′)-epigallocatechin (7), were isolated from the tea plant Camellia sinensis (L.) O. Kuntze var. sinensis (cv., Yabukita). The structure of 8, including stereochemistry, was elucidated by spectroscopic methods and hydrolysis. The compounds, along with commercially available pyrogallol (1), (+)-catechin (2), and (−)-epicatechin (3), were examined for toxicity towards egg-bearing adults of Caenorhabditis elegans. The anthelmintic mebendazole (9) was used as a positive control. Neither 2 nor 3 were toxic but the other compounds were toxic in the descending order 8, 7 6, 9, 4, 5, 1. The LC50 (96 h) values of 8 and 9 were evaluated as 49 and 334 μmol L−1, respectively. These data show that many green tea polyphenols may be potential anthelmintics.  相似文献   

5.
Five flavonoids, myricetin-3′-methylether 3-O-β-d-galactopyranoside (1), myricetin-3′,5′-dimethylether 3-O-β-d-galactopyranoside (2), quercetin (3), kaempferol (4), and tamarixetin (5) were isolated from the buds of Cleistocalyx operculatus (Myrtaceae). The chemical structures of these compounds were determined on the basis of spectroscopic analyses, including 2D NMR. Their anti-Alzheimer effects were evaluated via acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity assays. All five compounds 1–5 showed potential inhibitory activities against AChE with IC50 values of 19.9, 37.8, 25.9, 30.4 and 22.3 μM, respectively, while compounds 1, 3, 4 and 5 also possessed BChE inhibitory activity with IC50 values of 152.5, 177.8, 62.5, and 160.6 μM, respectively.  相似文献   

6.
Purification of a MeOH extract from the aerial parts of Hylomecon vernalis Maxim. (Papaveraceae) using column chromatography furnished a new acetylated flavonol glycoside (1), together with twenty known phenolic compounds (2–21). Structural elucidation of 1 was based on 1D- and 2D-NMR spectroscopy data analysis to be quercetin 3-O-[4‴-O-acetyl-α-L-arabinopyranosyl]-(1‴→6″)-β-D-galactopyranoside (1). The structures of compounds 2–21 were elucidated by spectroscopy and confirmed by comparison with reported data; quercetin 3-O-[2‴-O-acetyl-α-L-arabinopyranosyl]-(1‴→6″)-β -D-galactopyranoside (2), quercetin 3-O-α-L-arabinopyranosyl-(1‴→6″)-β-D-galactopyranoside (3), quercetin 3-O-β -D-galactopyranoside (4), kaempferol 3,7-O-α-L-dirhamnopyranoside (5), diosmetin 7-O-β -D-glucopyranoside (6), diosmetin 7-O-β -D-xylopyranosyl-(1‴→6″)-β-D-glucopyranoside (7), p-hydroxybenzoic acid (8), protocatechuic acid (9), caffeic acid (10), 6-hydroxy-3,4-dihydro-1-oxo-β -carboline (11), (Z)-3-hexenyl-β -D-glucopyranoside (12), (E)-2-hexenyl-β -D-glucopyranoside (13), (Z)-3-hexenyl-α-Larabinopyranosyl-(1″→6′)-β-D-glucopyranoside (14), oct-1-en-3-yl-α-L-arabinopyranosyl-(1″→6′)-β-D-glucopyranoside (15), benzyl-β-D-apiofuranosyl-(1″→6′)-β-D-glucopyranoside (16), benzyl-α-L-arabinopyranosyl-(1″→6′)-β-D-glucopyranoside (17), benzyl-β-D-xylopyranosyl-(1″→6′)-β-Dglucopyranoside (18), 2-phenylethyl-α-L-arabinopyranosyl-(1″→6′)-β-D-glucopyranoside (19), 2-phenylethyl-β-D-apiofuranosyl-(1″→6′)-β-D-glucopyranoside (20), and aryl-β-D-glucopyranoside (21). Compounds 2-21 were isolated for the first time from this plant. The isolated compounds were tested for cytotoxicity against four human tumor cell lines in vitro using a Sulforhodamin B bioassay.  相似文献   

7.
The inhibitory effects of the ethyl acetate extract and capsaicin (1) and dihydrocapsaicin (2) isolated from fruits of Capsicum annuum chili pepper type, and synthetic capsaicinoid derivatives (N-(4-hydroxyphenylethyl)decamide (3), (E)-N-(4-hydroxy-3-methoxybenzyl)-3,7-dimethylocta-2,6-dienamide (4), 4-hydroxy-3-methoxy-N-((E)-3,7-dimethylocta-2,6-dienyl)benzamide (5) and N-(4-hydroxy-3-methoxybenzyl)decamide (6) at different concentrations were evaluated against Streptococcus mutans. The minimum inhibitory concentration at which the ethyl acetate extract prevented the growth of S. mutans was 2.5 mg/mL; those of the isolated compounds 1 and 2 were 1.25 μg/mL, while 3 was 5.0 μg/mL, and 4, 5 and 6 were 2.5 μg/mL, respectively.  相似文献   

8.
By various chromatographic methods, three flavonoids, (2S)-naringenin (1), isorhamnetin 3-O-(2-O-α-l-rhamnopyranosyl) β-d-glucopyranoside (2), typhaneoside (3), and two sterol glycosides, β-sitosterol-3-O-(6-octadecanoyl) β-d-glucopyranoside (4) and β-sitosterol-3-O-(6-octadeca-9Z,12Z-dienoyl) β-d-glucopyranoside (5), were isolated from the pollen of Typha angustata. Their structures were determined on the basis of spectroscopic analyses. The flavonoids (13) were evaluated for their effects on the viability and proliferation of rat aortic smooth muscle cells. (2S)-naringenin (1) significantly inhibited cell proliferation in a dose-dependent manner without cytotoxic at concentrations of 30, and 50 μM; it reduced the number of cells following PDGF-BB treatment to 1.83 ± 0.30 × 104 and 2.20 ± 0.60 × 104 cells/well, respectively. These findings suggest that (2S)-naringenin has antiproliferative effects on aortic smooth muscle cells.  相似文献   

9.
Chromatographic separation of the EtOAc fraction from the leaf and stem of Vitis amurensis led to the isolation of six oligostilbenoids (i.e., r-2-viniferin (1), trans-amurensin B (2), trans-ɛ-viniferin (3), gnetin H (4), amurensin G (5), (+)-ampelopsin A (8)) and four stilbenoids (i.e., trans-resveratrol (6), (+)-ampelopsin F (7), piceatannol (9), and trans-piceid (10)). The structures have been identified on the basis of spectroscopic evidence and physicochemical properties. The isolates were investigated for cytotoxic activity against three cancer cell lines in vitro using the MTT assay method. Amurensin G (5) and trans-resveratrol (6) showed significant cytotoxic activity against L1210, K562 and HTC116 cancer cell lines with IC50 values ranging from 15.7 ± 2.1 to 30.9 ± 1.8 μM. (+)-Ampelopsin A (8) and trans-piceid (10) exhibited considerable cytotoxic activity against L1210 (IC50 values of 30.6 ± 4.1 and 28.7 ± 2.81 μM, respectively) and K562 (IC50 values of 38.6 ± 0.82 and 24.6 ± 0.76 μM, respectively). Gnetin H (4) showed only weak cytotoxic activity against L1210 with an IC50 value of 40.1 ± 4.23 μM. On the other hand, r-2-viniverin (1), trans-amurensin B (2), trans-ɛ-viniferin (3), (+)-ampelopsin F (7), and piceatannol (9) exhibited no activity on three cancer cell lines.  相似文献   

10.
Four new glycosides, luteolin-7-methoxy-3′-O-(3″-O-acetyl)-β-D-gluco pyranuronic acid-6″-methyl ester (1), benzyl-6-[(2E)-2-butenoate]-β-D-glucopyranoside (2), 2-methoxy-4-(2-propen-1-yl)penyl-6-acetate-β-D-glucopyranoside (3), and 2-methoxy-4-(2-propen-1-yl)penyl-6-[(2E)-2-butenoate]-β-D-glucopyranoside (4), along with benzyl-β-D-glucopyranoside (5), 2-methoxy-4-(2-propen-1-yl)penyl-β-D-glucopyranoside (6), and pectolarigenin (7), were isolated from the whole plant of Dracocephalum tanguticum Maxim. The structures of 1-4 were elucidated by detailed spectroscopic analyses, including HR-ESI-MS and 2D NMR spectroscopic data. The inhibitory effects against nitric oxide production in LPS-stimulated RAW264.7 cells of all seven compounds were also evaluated.  相似文献   

11.
A new diterpene glycoside, tomentoside I (1), along with eleven known compounds, including the four coumarins, 4,5-dimethoxyl-7-methylcoumarin (2), 4,7-dimethoxyl-5-methylcoumarin (3), isofraxidin (4) and fraxidin (5) as well as the seven triterpenoids, oleanolic acid (6), oleanolic acid 3-O-α-L-arabinopyranoside (7), oleanolic acid 3-O-β-D-galactopyranosyl-(1→3)-β-D-glucopyranoside (8), hederagenin 3-O-α-L-arabinopyranoside (9), betulinic acid (10), 18-hydroxyursolic acid (11) and 2α,3β,23-trihydroxyurs-12-en-28-oic acid (12) were isolated from the ethanolic extract of the root of Anemone tomentosa and their chemical structures were elucidated by spectroscopic methods. The antimicrobial activities of compounds 1–12 were measured using the agar disc-diffusion method. Also, their antioxidant activities against 1,1-diphenyl-2-picrylhydrazyl (DPPH) were evaluated.  相似文献   

12.
Heavy metals can lead to osmotic stress by disrupting the regulation of sodium ion in aquatic organisms. In this study, gene expression patterns and enzymatic activities of Na+/K+-ATPase in the monogonont rotifer, Brachionus koreanus were measured after exposure to different Cd (7.5, 15, and 30 mg/L), and Pb (0.1, 0.5, and 1.0 mg/L), respectively. As results, a significant increase in Bk Na+/K+-ATPase activity was observed after exposure to Cd and Pb in a concentration-dependent manner. Bk Na +/K +-ATPase mRNA level was significantly upregulated in the Cd-exposed group, whereas its level was reduced in the Pb-exposed group. These findings indicate that heavy metals could induce osmotic stress in B. koreanus, and Na+/K+-ATPase may be involved in cellular ho-meostasis in response to heavy metal exposure. This study is helpful for the understanding of the molecular mode of action of B. koreanus in response to heavy metals.  相似文献   

13.
A new furostanol saponin, (25S)-26-O-β-d-glucopyranosyl-5β-furost-20(22)-en-3β, 15β,26-triol-3-O-[α-l-rhamnopyranosyl-(1–4)]-β-d-glucopyranoside, namely, aspacochioside D (1) were isolated from Asparagus cochinchinensis (Lour.) Merr, along with three known saponins, aspacochioside C (2), (25S)-5β-spirostan-3β-yl-O-[O-α-l-rhamnopyranosyl-(1–4)]-β-d-glucopyranoside (3), and pseudoprotoneodioscin (4). The structure of 1 was elucidated on the basis of chemical reactions and spectral analysis (IR, GC, ESI-MS, 1H-NMR, 13C-NMR, DEPT, HMBC, HMQC and NOESY). The antiproliferative effects of 1–4 were evaluated in a cytotoxicity assay against the human tumor cell line, A549. Compound 2 (Aspacochioside C) exhibited moderate cytotoxicity against A-549, with an IC50 value of 3.87 μg/mL.  相似文献   

14.
In our ongoing search for anti-inflammatory agents originating from Korean medicinal plants, we found that the hexane and BuOH fractions of the MeOH extract from the whole plants of Melandrium firmum Rohrbach inhibited 5-lipoxygenase (5-LOX) activity. By activity-guided fractionation, eleven compounds, α-spinaterol (1), ursolic acid (2), ergosterol peroxide (3), α-spinaterol glucoside (4), 2-methoxy-9-β-D-ribofuranosyl purine (5), aristeromycin (6), ecdysteron (7), polypodoaurein (8), (-)-bornesitol (9), mannitol (10) and cytisoside (11) were isolated from the hexane and BuOH fractions using column chromatography. Compounds 2, 5, 6, 8, 9, 10 and 11 were isolated for the first time from this plant. Compounds 1, 3, 4 and 7 inhibited 5-LOX activity with IC50 values of 21.04 μM, 42.30 μM, 32.82 μM, and 17.18 μM, respectively. Ming Shan Zheng and Nam Kyung Hwang contributed equally to this work.  相似文献   

15.
A new C-alkylated flavonoid (5,7-dihydroxy-3′-(4″-acetoxy-3″-methylbutyl)-3,6,4′-trimethoxyflavone (1), along with two known C-alkylated flavonoids (5,7-dihydroxy-3′-(3-hydroxymethylbutyl)-3,6,4′-trimethoxyflavone (2), 5,7,4′-trihydroxy-3′-(3-hyroxymethylbutyl)-3,6-dimethoxyflavone (3) and two new source C-alkylated flavonoids (5,7-dihydroxy-3′-(2-hydroxy-3-methyl-3-butenyl)-3,6,4′-trimethoxyflavone (4), 5,7,4′-trihydroxy-3,6-dimethoxy-3′-isoprenyl-flavone (5) were isolated from the aerial parts of Dodonaea viscosa. The structures of all compounds were established on the basis of 1D and 2D NMR spectroscopy and mass spectrometry. The isolated compounds were evaluated for their inhibitory effect on urease and α-chymotrypsin enzyme. All the compounds (1–5) exhibited mild inhibition against urease but remained recessive in case of α-chymotrypsin.  相似文献   

16.
By various chromatographic methods, one new phenylpropanoid glycoside, heterosmilaside (1), two known phenylpropanoid glycosides, helonioside B (2), and 2′,6′-diacetyl-3,6-diferuloyl sucrose (3), and three known flavonoids, isoquercetin (4), quercetin-3-O-β-D-glucuronopyranoside (5), and quercetin-3-O-(2″-α-L-rhamnopyranosyl)-β-D-glucuronopyranoside (6) were isolated from the methanolic extract of the aerial part of Heterosmilax erythrantha Baill. Their structures were elucidated on the basis of spectroscopic analyses. All the isolated compounds were tested for antioxidant activity in the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay. Among them, compounds 5 and 6 showed significant antioxidant activity with SC50 values of 3.7 and 6.5 μg/mL, respectively.  相似文献   

17.
The purification of a MeOH extract from the rhizome of Acorus gramineus (Araceae) using column chromatography furnished two new stereoisomers of phenylpropanoid, acoraminol A (1) and acoraimol B (2). It also furnished 17 known phenolic compounds, β-asarone (3), asaraldehyde (4), isoacoramone (5), propioveratrone (6), (1′R,2′S)-1′,2′-dihydroxyasarone (7), (1′S,2′S)-1′,2′-dihydroxyasarone (8), 3′,4′-dimethoxycinnamyl alcohol (9), 3′,4′,5′-trimethoxycinnamyl alcohol (10), kaempferol 3-methyl ether (11), 2-[4-(3-hydroxypropyl)-2-methoxyphenoxy]-1,3-propanediol (12), hydroxytyrosol (13), tyrosol (14), (2S,5S)-diveratryl-(3R,4S)-dimethyltetrahydrofuran (15), (7S,8R)-dihydrodehydrodiconiferyl alcohol (16), 7S,8S-threo-4,7,9,9′-tetrahydroxy-3,3′-dimethoxy-8-O-4′-neolignan (17), 7S,8R-erythro-4,7,9,9′-tetrahydroxy-3,3′-dimethoxy-8-O-4′-neolignan (18), and dihydroyashsbushiketol (19). The structures of the new compounds were elucidated by analysis of spectroscopic data including 1D and 2D NMR data. The absolute configurations of 1 and 2 were determined using the convenient Mosher ester procedure. Compounds 5–19 were isolated for the first time from this plant source. The isolated compounds were tested for cytotoxicity against four human tumor cell lines in vitro using a Sulforhodamine B (SRB) bioassay.  相似文献   

18.
A new isoflavone glycoside, 6-methoxy-7-hydroxy-4′-O-β-d-glucosyl isoflavone, glycitein-4′-O-β-d-glucoside (10), along with nine known flavonoids, were isolated from the stem bark of Sophora japonica. The structures of these compounds were determined by analysis of spectroscopic data (1D -, 2D - NMR and HRMS). The inhibitory effects of all the isolated compounds on aldose reductase were evaluated in vitro. Among these compounds, daidzein (1), puerol A (4), and paratensein-7-O-glucoside (9) exhibited potent inhibitory effects, with IC50 values of 3.2, 6.4, and 1.9 μM, respectively.  相似文献   

19.
A new dihydroflavone, 5-carboxymethyl-7,4′-dihydroxyflavonone (1), and its glucoside 5-carboxymethyl-7,4′-dihydroxyflavonone-7-O-β-d-glucopyranoside (2), and one new monoterpene glucoside, (4Z,6E)-2,7-dimethyl-8-hydroxyocta-4,6-dienoic acid 8-O-β-d-glucopyranoside (3), were isolated from the whole plants of Selaginella moellendorffii. Their structures were determined by spectroscopic methods and chemical transformation. Compound 2 was evaluated for the ability to enhance glucose consumption in normal and insulin-resistant L6 muscle cells induced by high concentrations of insulin and glucose. Glucose consumption in insulin-resistant cells (but not in normal cells) was increased 15.2 ± 3.3% (p < 0.01) by compound 2 at a concentration of 0.1 μM in the presence of insulin (1 nM).  相似文献   

20.
Bioassay-guided chromatographic purification of the antitubercular chloroform extract of Pandanus tectorius Soland. var. laevis leaves afforded a new tirucallane-type triterpene, 24,24-dimethyl-5β-tirucall-9(11),25-dien-3-one (1), squalene and a mixture of the phytosterols stigmasterol and β-sitosterol. Microplate Alamar Blue Assay (MABA) showed that 1 inhibited the growth of Mycobacterium tuberculosis H37Rv with a MIC of 64 μg/mL, while squalene and the sterol mixture have MICs of 100 and 128 μg/mL, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号