首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 375 毫秒
1.
随着我国天然气行业的发展,越来越多的LNG接收站兴建起来。由于LNG的特殊性,生产运营过程中不可避免地将产生BOG。为了给LNG接收站选择合适的BOG处理工艺,分析现行的BOG直接输出和再冷凝工艺,着重从装置构成、能耗和运营成本等方面对比BOG再液化和CNG外输两种工艺,结果表明,BOG再液化投资、能耗较高,但与CNG相比仍然具有优势。同时,对现有BOG再液化工艺流程进行优化,使BOG经再液化压缩机升压后既能进行再液化回收,也能直接外输进入管网。该研究可为新建LNG接收站的BOG处理工艺选型提供参考。  相似文献   

2.
针对液化天然气(LNG)接收站投产初期尚未建立气态外输系统时的蒸发气(BOG)处理问题,基于LNG接收站典型流程提出了新型BOG回收方案。以某大型LNG接收站为例,采用HYSYS软件对新型BOG回收流程进行了模拟计算,明确了新型BOG回收流程应用条件。从技术及经济性两方面验证了新型BOG回收流程是LNG接收站零气态外输工况下BOG处理的有效方式,为LNG接收站的BOG处理提供了新的思路。  相似文献   

3.
LNG接收站BOG处理技术优化   总被引:2,自引:0,他引:2  
LNG接收站BOG处理工艺分再冷凝和高压压缩两种,均有其不足。就再冷凝工艺而言,接收站无外输时BOG只能采取放空或火炬燃烧等措施进行处理;就高压压缩工艺而言,接收站外输期时无法回收LNG的冷能。为此,分别采用静态模型、动态模型等计算方法分别计算无外输期和有外输期间最大BOG产生量,弄清各种工况下BOG的产生量。在此基础上,从BOG产生的机理出发,分析降低接收站产生BOG的措施。结果表明,优化BOG压缩机组合可有效回收产生的BOG。建议在接收站设计、建设过程中,应综合考虑再冷凝工艺和直接压缩机工艺,采取措施降低BOG的产生,实现BOG的有效回收利用。  相似文献   

4.
张圆 《石化技术》2018,(11):15-16
目前全国LNG接收站大多采用再冷凝器工艺回收BOG,但整个BOG回收工艺中存在很多的控制技巧和难点。针对此问题对唐山LNG接收站再冷凝器控制进行分析,提出用减少BOG产生、降低进入再冷凝器的BOG温度等措施提高再冷凝器的处理能力和控制的平稳性,保证系统安全运行。  相似文献   

5.
BOG处理是LNG接收站的重要工艺,其直接决定了接收站能否安全稳定运行。根据接收站不同的运行阶段,BOG处理工艺也不相同。同时,每个接收站中的BOG处理工艺会因各自项目特点而不同。本文综合研究LNG接收站中各类BOG处理方法,对各自工艺特点进行归纳汇总,并分析融入创新思想。为LNG接收站项目选取BOG处理工艺提供一定借鉴指导意义。  相似文献   

6.
风险管理在大型液化天然气(LNG)接收站工程项目的全生命周期内占有举足轻重的地位,对项目方案设计、施工建设、投产应用等各阶段的风险识别、评估、应对更是建设单位和总承包商等各方的关注重点。采用HAZOP风险分析对LNG接收站运输船、卸船臂及进料管线、LNG储罐、BOG处理系统等关键节点进行风险识别;应用事故树分析及概率风险评估,重点评估火灾、BOG压缩机故障、BOG压力控制系统故障以及真空阀失效等风险事件对LNG储罐超压事故的影响。基于得到的研究结果,提出了相应LNG接收站风险控制的应对措施,为LNG接收站风险管理提出合理的借鉴和参考。  相似文献   

7.
LNG接收站的大型储罐在投用前需要逐步冷却至-162℃,冷却前储罐内充满氮气,冷却过程中将产生大量高含氮气的蒸发气体(BOG),LNG接收站工艺系统无法对其回收利用,只能直接排放至火炬;同时LNG储罐冷却中后期产生BOG的流量极大,超出了接收站BOG的回收处理能力,大量BOG被排放至火炬,造成大量浪费。为此,珠海LNG接收站通过调研国内已投用LNG储罐的冷却方式,并对其预冷过程进行研究,创新性地提出了储罐冷却前下排式氮气置换法和"BOG+LNG"储罐冷却工艺,降低了LNG储罐冷却过程中BOG的氮气含量,提高了LNG接收站冷能利用效率,同时也降低了BOG的产生量,使之能更好地匹配于LNG接收站BOG的回收处理能力。现场实验结果表明:(1)下排式氮气置换法能够在LNG储罐冷却前将罐内氮气置换至合格要求;(2)"BOG+LNG"储罐冷却工艺能够有效降低LNG储罐冷却过程中BOG的产生量,使之不超过LNG接收站的回收处理能力,实现了LNG储罐冷却过程中BOG的零排放。该方法可作为LNG储罐投产试车的借鉴和参考。  相似文献   

8.
LNG接收站BOG处理工艺优化——以青岛LNG接收站为例   总被引:2,自引:0,他引:2  
蒸发气(Boil Off Gas,缩写为BOG)的处理是LNG接收站必须考虑的关键问题之一,关系着LNG接收站的能耗及安全、平稳运行。为此,介绍了LNG接收站BOG处理的4种工艺:①BOG直接压缩工艺;②BOG再冷凝液化工艺;③BOG间接热交换再液化工艺;④蓄冷式BOG再液化工艺。运用HYSYS软件建立了采用不同BOG处理工艺的LNG接收站模型,对比了目前主要采用的BOG直接压缩工艺和再冷凝液化工艺在工艺流程及能耗方面的差异,并分析了外输量、外输压力及再冷凝器压力对BOG处理工艺节能效果的影响,在此基础上提出了BOG再冷凝液化工艺的改进措施——BOG进入再冷凝器前进行预冷,可比原工艺节约18.2%的能耗。同时还针对青岛LNG接收站提出了BOG再冷凝液化及直接压缩工艺混合使用的优化运行方案,可使进入再冷凝器的LNG流量保持恒定,没被冷凝的BOG经过高压压缩机提压到外输压力,与完成气化的LNG混合后外输,可避免BOG进入火炬系统而造成的能源浪费,同时减小再冷凝器入口流量的波动,使装置运行更稳定、更经济。  相似文献   

9.
《天然气化工》2016,(1):48-50
BOG估算量影响压缩机、再冷凝器、低压泵、火炬等关键设备的配置,是LNG接收站工艺计算的核心部分之一。LNG接收站BOG量的静态计算方法被用于在设计前期阶段保守估算BOG量,此法通过调整可适用于多种规模类型的LNG接收站,也适用与浮式气化船和陆上储罐相结合的接收终端类型。  相似文献   

10.
LNG接收站蒸发气处理系统静态设计计算模型   总被引:7,自引:1,他引:6  
BOG(Boil Off Gas)系统是LNG接收站设计阶段中必须重点考虑的关键问题之一。与大型LNG液化工厂中主要考虑BOG提供燃料气和LNG装船工况下BOG直接通过火炬燃烧情况完全不同,LNG接收站设计中则应结合气化外输压力、最小外输流量等不同项目特点,对于BOG的回收、处理和利用有更多的选择。为此,按照LNG接收站卸船和非卸船两种基本工况划分,对设计阶段保守估算BOG产生量引入完整的静态计算方法,通过实例计算,提出了BOG压缩机的合理配置方案,以期实现技术与经济两方面的优化。该计算方法对于国内自主进行LNG接收站的设计具有参考意义,对于小型LNG卫星站的设计亦有借鉴意义。  相似文献   

11.
浙江LNG接收站卸料管线BOG预冷模拟研究   总被引:1,自引:0,他引:1  
由于LNG的低温特性,在其首次进入接收站工艺系统前,需要先对LNG卸料管线采用低温LNG蒸气(BOG)预冷至-120 ℃,然后再引入LNG将卸料管线冷却至-150 ℃。卸料管线预冷是确保LNG接收站顺利投产试运行的重点工作。为此,以浙江LNG接收站为例,采用自编程序建模,针对管径为1 000 mm长距离LNG卸料管线的BOG预冷过程,建立了一维流动传热模型,借助MATLAB工具模拟了BOG预冷LNG接收站卸料管线的整个过程,结果显示:卸料管线壁面温度下降速率最大不超过10 ℃/h,计算时间步长取10 s,计算得出737 m的LNG卸料管线冷却到-120 ℃左右所需时间为30.25 h。同时还分析了不同因素对卸料管线预冷过程的影响,结果显示:①冷却用BOG流量随着时间的推移逐渐增大,在冷却结束阶段,BOG流量达40.95 kg/s,累积BOG消耗量为14 330 kg;②管道内BOG流速随冷却时间增加而增大;③管道内BOG压力随冷却时间及管道长度的增加而减小。建议实际操作中,将管线冷却至-100 ℃即可进入LNG冷却阶段,可节省整个管线的冷却时间及BOG用量。  相似文献   

12.
青岛LNG接收站再冷凝器入口LNG流量调节阀灵敏度不高,且不适合频繁动作,导致再冷凝器液位波动较大,难以实现自动控制。通过对现有操作工艺和控制方案的深入分析,提出增加入口BOG温度调节作为辅助控制手段的新思路。为此,进行了入口BOG温度梯度变化下再冷凝器系统的响应实验,定量衡量了入口BOG温度对再冷凝器液位的控制能力。理论和实验数据说明,通过调节入口BOG温度可以改善再冷凝器液位控制的稳定性和精度,减少入口LNG流量调节阀的动作次数。文中提出的方案可以在手动控制下保护入口LNG流量调节阀,减轻操作员的工作强度,同时也有助于再冷凝器液位的自动控制回路设计。  相似文献   

13.
目的 研究LNG接收站各工况下BOG产生量的静态计算方法。方法 将接收站的BOG产生拆解成不同的单一原因,并提供各单一原因下BOG产生量的静态计算方法,通过叠加可估算不同工况下全场的BOG产生总量。结果 以北燃LNG项目初设数据为基础,选择在卸船、最小外输、贫液、不装车运行工况下,将静态计算结果与初设提供的仿真计算结果对比分析,显示静态计算方法得出的BOG产生量具有较高的准确度。但静态计算方法现阶段仍具有不足之处。结论 静态计算方法在指导生产运行中有较高的可靠性和可行性。  相似文献   

14.
为了解决LNG接收站在低输量工况下闪蒸气(Boil-Off Gas,以下简称BOG)回收不完全的问题,在不增加冷凝工艺复杂性的前提下,基于现有设备的实际工况及工艺流程,以热力学原理、静态仿真计算结果为依据,在传统的蓄冷式BOG冷凝方案的基础上,结合LNG冷能利用方式,提出了一种基于LNG接收站制氮系统的蓄冷回收BOG新工艺,并进行了BOG温度、冷凝器入口压力、LNG组分等参数的敏感性分析,明确了新工艺的适用条件。运用效果表明:(1)新工艺充分利用了LNG接收站的现有设备,每年可为LNG接收站节能创收近160万元;(2)新工艺可实现高负荷下的BOG冷凝,其冷凝外输工艺可作为辅助冷凝工艺,冷凝回罐工艺可作为应急工艺——液氮用于蓄冷、气氮用于吹扫,可满足接收站的多种需求;(3)较之于前人提出的4种BOG处理工艺(多级压缩、级间冷却、预冷和透平回收轴功),新工艺在对外输量的依赖性、流程安全性及操作性等方面均有优势。结论认为:新工艺在设备投资、能耗、工艺安全性及经济效益上都具有明显的优势,值得推广应用。  相似文献   

15.
LNG加气站槽车BOG压缩液化回收研究   总被引:1,自引:1,他引:0  
近年来,在LNG加气站快速发展的同时,LNG车辆发展相对缓慢,导致LNG加气站蒸发气(boil-off gas,简称BOG)量较大,特别是LNG槽车卸车后残余压力为0.2~0.4 MPa的BOG,给LNG加气站带来了较大的经济损失和安全隐患。提出了基于BOG压缩机的BOG压缩液化工艺和装置,利用LNG冷量回收BOG,实现加气站BOG零排放。在此基础上,搭建了实验装置,并采用液氮和LNG开展了BOG回收实验。实验数据表明,当BOG和LNG质量比为3%时,该工艺BOG液化回收率在90%左右。由此可知,该工艺可以实现槽车的BOG快速高效回收。  相似文献   

16.
李宁 《天然气化工》2020,(1):57-60,84
为探究LNG接收站BOG处理方式的原理,对几种常见的BOG处理方式进行了总结,分析了再冷凝法、加压外输法、压缩为CNG三种方式的原理、优缺点和适用条件,并通过软件模拟了接收站的BOG再冷凝处理工艺,对模拟流程进行了简要分析,得出了冷凝一定量BOG所需的最小LNG流量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号