首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Highly dense electrically conductive silicon carbide (SiC)–(0, 10, 20, and 30 vol%) titanium boride (TiB2) composites with 10 vol% of Y2O3–AlN additives were fabricated at a relatively low temperature of 1800°C by spark plasma sintering in nitrogen atmosphere. Phase analysis of sintered composites reveals suppressed β→α phase transformation due to low sintering temperature, nitride additives, and nitrogen sintering atmosphere. With increase in TiB2 content, hardness increased from 20.6 to 23.7 GPa and fracture toughness increased from 3.6 to 5.5 MPa m1/2. The electrical conductivity increased to a remarkable 2.72 × 103 (Ω cm)–1 for SiC–30 vol% TiB2 composites due to large amount of conductive reinforcement, additive composition, and sintering in nitrogen atmosphere. The successful electrical discharge machining illustrates potential of the sintered SiC–TiB2 composites toward extending the application regime of conventional SiC-based ceramics.  相似文献   

2.
Highly conductive SiC-Ti2CN composites were fabricated from β-SiC and TiN powders with 10?vol% Y2O3-AlN additives via pressureless sintering. The effect of initial TiN content on the microstructure, and electrical and mechanical properties of the SiC-Ti2CN composites was investigated. It was found that all specimens could be sintered to ≥98% of the theoretical density. The electrical resistivity of the SiC-Ti2CN composites decreased with increasing initial TiN content. The SiC-Ti2CN composites prepared from 25?vol% TiN showed the highest electrical conductivity (~1163 (Ω?cm)?1) for any pressureless sintered SiC ceramics thus far. The high electrical conductivity of the composites was attributed to the in situ-synthesis of an electrically conductive Ti2CN phase and the growth of N-doped SiC grains during pressureless sintering. The flexural strength, fracture toughness, and Vickers hardness of the composite fabricated with 25?vol% TiN were 430?MPa, 4.9?MPa?m1/2, and 23.1?GPa, respectively, at room temperature.  相似文献   

3.
SiC ceramics were fabricated by SPS sintering at 1850 ℃ with different amounts of Ti3AlC2. The effects of Ti3AlC2 content on the microstructure and electrical properties of the material were discussed. The densification and electrical properties of SiC ceramics have been improved by adding MAX phase Ti3AlC2. Ti3AlC2 decomposes to produce TiC and Al in the sintering process. The conductivity of SiC ceramics is elevated by TiC serving as a conductive second phase, and Al is dissolved into SiC lattice to promote the densification of SiC ceramics. With the addition of 15 wt% Ti3AlC2, the voltage-current curve of the sample changes from nonlinear to linear electrical characteristics with the resistivity dropping to 52 Ω cm. Moreover, the introduction of Ti3AlC2 reduces the temperature sensitivity of SiC ceramics. When the Ti3AlC2 content reaches 15 wt%, the resistivity of SiC ceramics remains relatively constant within the range of 20–400 ℃.  相似文献   

4.
The electrical properties of β‐SiC ceramics were found to be adjustable through appropriate AlN–Y2O3 codoping. Polycrystalline β‐SiC specimens were obtained by hot pressing silicon carbide (SiC) powder mixtures containing AlN and Y2O3 as sintering additives in a nitrogen atmosphere. The electrical resistivity of the SiC specimens, which exhibited n‐type character, increased with AlN doping and decreased with Y2O3 doping. The increase in resistivity is attributed to Al‐derived acceptors trapping carriers excited from the N‐derived donors. The results suggest that the electrical resistivity of the β‐SiC ceramics may be varied in the 104–10?3 Ω·cm range by manipulating the compensation of the two impurity states. The photoluminescence (PL) spectrum of the specimens was found to evolve with the addition of dopants. The presence of N‐donor and Al‐acceptor states within the band gap of 3C–SiC could be identified by analyzing the PL data.  相似文献   

5.
Polycrystalline SiC ceramics with 10 vol% Y2O3-AlN additives were sintered without any applied pressure at temperatures of 1900-2050°C in nitrogen. The electrical resistivity of the resulting SiC ceramics decreased from 6.5 × 101 to 1.9 × 10−2 Ω·cm as the sintering temperature increased from 1900 to 2050°C. The average grain size increased from 0.68 to 2.34 μm with increase in sintering temperature. A decrease in the electrical resistivity with increasing sintering temperature was attributed to the grain-growth-induced N-doping in the SiC grains, which is supported by the enhanced carrier density. The electrical conductivity of the SiC ceramic sintered at 2050°C was ~53 Ω−1·cm−1 at room temperature. This ceramic achieved the highest electrical conductivity among pressureless liquid-phase sintered SiC ceramics.  相似文献   

6.
《Ceramics International》2022,48(16):23151-23158
SiC composite ceramics have good mechanical properties. In this study, the effect of temperature on the microstructure and mechanical properties of SiC–TiB2 composite ceramics by solid-phase spark plasma sintering (SPS) was investigated. SiC–TiB2 composite ceramics were prepared by SPS method with graphite powder as sintering additive and kept at 1700 °C, 1750 °C, 1800 °C and 50 MPa for 10min.The experimental results show that the proper TiB2 addition can obviously increase the mechanical properties of SiC–TiB2 composite ceramics. Higher sintering temperature results in the aggregation and growth of second-phase TiB2 grains, which decreases the mechanical properties of SiC–TiB2 composite ceramics. Good mechanical properties were obtained at 1750 °C, with a density of 97.3%, Vickers hardness of 26.68 GPa, bending strength of 380 MPa and fracture toughness of 5.16 MPa m1/2.  相似文献   

7.
The influence of Y2O3 addition on electrical properties of β-SiC ceramics has been investigated. Polycrystalline SiC samples obtained by hot-pressing SiC–Y2O3 powder mixtures in nitrogen (N) atmosphere contain Y2O3 clusters segregated between SiC grains. Y2O3 forms a Y–Si-oxycarbonitride phase during sintering by reacting with SiO2 and SiC and by dissolution of N from the atmosphere; this induces N doping into the SiC grains during the process of grain growth. The SiC samples exhibit an electrical resistivity of ~10?3 Ω cm and a carrier density of ~1020 cm?3, which are ascribed to donor states derived from N impurities. The increase in defect density with increasing Y2O3 content is likely to be a main limiting factor of the electrical conductivity of SiC ceramics.  相似文献   

8.
The effects of the boron carbide (B4C) content and sintering atmosphere on the electrical, thermal, and mechanical properties of porous silicon carbide (SiC) ceramics were investigated in the porosity range of 58.3%–70.3%. The electrical resistivities of the nitrogen-sintered porous SiC ceramics (∼10–1 Ω·cm) were two orders of magnitude lower than those of argon-sintered porous SiC ceramics (∼101 Ω·cm). Both the thermal conductivities (3.3–19.8 W·m–1·K–1) and flexural strengths (8.1–32.9 MPa) of the argon- and nitrogen-sintered porous SiC ceramics increased as the B4C content increased, owing to the decreased porosity and increased necking area between SiC grains. The electrical resistivity of the porous SiC ceramics was primarily controlled by the sintering atmosphere owing to the N-doping from the nitrogen atmosphere, and secondarily by the B4C content, owing to the B-doping from the B4C. In contrast, the thermal conductivity and flexural strength were dependent on both the porosity and necking area, as influenced by both the sintering atmosphere and B4C content. These results suggest that it is possible to decouple the electrical resistivity from the thermal conductivity by judicious selection of the B4C content and sintering atmosphere.  相似文献   

9.
SiC-based ceramics are of great interest for various advanced applications. However, its fabrication requires high-temperature treatment at ~2000 – 2100 °С. In this study, we developed an approach based on low-temperature reactive spark plasma sintering to produce dense SiC-based ceramics with superior mechanical properties. It was found that an SPS temperature of 1600 °C and introduction of 10 – 15 wt% of mechanically activated non-oxide Ti–Si–C additive is required to manufacture ceramics with a theoretical density of higher than 90%. Nonetheless, employing 5 – 15 wt% of the additive mixture and an SPS temperature of 1700 °C, the maximum density of ~ 98% was achieved. The controlled formation and decomposition of the in-situ Ti3SiC2 MAX phase enables the fabrication of the engineering ceramics with enhanced compressive strength (550 MPa), elastic modulus (485 GPa), and microhardness (32 GPa), which are comparable to the best-reported SiC ceramics. The study has a significant potential for practical application in the production of advanced SiC-based ceramics for various purposes and could be used for further understanding and development of the high-temperature sintering methods.  相似文献   

10.
The electrical, thermal, and mechanical properties of porous SiC ceramics with B4C-C additives were investigated as functions of C content and sintering temperature. The electrical resistivity of porous SiC ceramics decreased with increases in C content and sintering temperature. A minimal electrical resistivity of 4.6 × 10?2 Ω·cm was obtained in porous SiC ceramics with 1 wt% B4C and 10 wt% C. The thermal conductivity and flexural strength increased with increasing sintering temperature and showed maxima at 4 wt% C addition when sintered at 2000 °C and 2100 °C. The thermal conductivity and flexural strength of porous SiC ceramics can be tuned independently from the porosity by controlling C content and sintering temperature. Typical electrical resistivity, thermal conductivity, and flexural strength of porous SiC ceramics with 1 wt% B4C-4 wt% C sintered at 2100 °C were 1.3 × 10?1 Ω·cm, 76.0 W/(m·K), and 110.3 MPa, respectively.  相似文献   

11.
The fabrication of dense amorphous Si–B–C–N monoliths is a processing challenge given that it is hard to avoid crystallization at the sintering temperatures needed to attain full density up to 1900°C for conventional hot pressing and SPS methods. We report here successful densification of amorphous Si2BC3N monoliths achieved by heating at 1100°C and 5 GPa. The relationships between microstructure, types of chemical bonding, and mechanical properties were investigated. The strong amorphous 3‐D networks of Si–C, C–B, C‐N (sp3), N‐B (sp3), and C–B–N bonds provide high densities at high applied pressure and thus amorphous Si2BC3N monoliths show high hardness of 29.4 GPa and elastic modulus of 291 GPa. The amorphous structure is lost with crystallization of β‐SiC and BN(C) reducing contributions from Si–C, C‐N (sp3), and C–B–N bond networks thereby decreasing mechanical properties.  相似文献   

12.
N-doped SiC-MoSi2 ceramics were successfully fabricated by hot pressing in N2 using Y(NO3)3.6 H2O as both sintering aids and additional N sources. The impact of Y(NO3)3.6 H2O content on the densification, electrical properties, and infrared emission performance of the resulting ceramics were investigated. The distribution of Y-based sintering aid is improved by melting of Y(NO3)3.6 H2O during slurry drying, enabling the relative density to increase up to 97.4%. Y(NO3)3.6 H2O subsequently decomposes during sintering and allows the substitution of atomic N for the C sites in SiC lattice and production of the N-derived donor level. A larger amount of N dopant elevates the carrier density up to 1.90 × 1016 cm-3. Remarkably, The SiC ? 10 wt% MoSi2 ceramics sintered with 16.9 wt% Y(NO3)3.6 H2O exhibits the lowest electrical resistivity (0.791 Ω·cm at room temperature) and highest infrared emissivity (0.913 at 800 ℃), the latter of which may also be attributed to lattice distortion induced by N doping. This work demonstrates N doping as a prospective strategy for synergistically optimizing the electrical conduction and infrared emission performance of SiC-based ceramics for infrared source applications.  相似文献   

13.
Composites of ZrC–SiC with relative densities in excess of 98% were prepared by reactive hot pressing of ZrC and Si at temperature as low as 1600°C. The reaction between ZrC and Si resulted in the formation of ZrC1?x, SiC, and ZrSi. Low‐temperature densification of ZrC?SiC ceramics is attributed to the formed nonstoichiometric ZrC1?x and Zr–Si liquid phase. Adding 5 wt% Si to ZrC, the three‐point bending strength of formed ZrC0.8–13.4 vol%SiC ceramics reached 819 ± 102 MPa with hardness and toughness being 20.5 GPa and 3.3 MPa·m1/2, respectively.  相似文献   

14.
Fine-grained and dense highly transparent Y2O3 ceramics have been successfully prepared using high sintering activity mesoporous Y2O3 powders without any additive by spark plasma sintering (SPS). The influences of the sintering temperature on microstructure, density, optical, and mechanical properties of SPS-sintered Y2O3 ceramics were studied in detail. As results, the optimal Y2O3 ceramics with high relative density of 99.90% and fine average grain size of 140 nm were obtained at a low sintering temperature of 1140°C and a moderate load pressure of 60 MPa for 5 min. Meanwhile, the dense Y2O3 ceramics with 1 mm thickness after annealing show a high linear transmittance of 78% (close to 94% of the theoretical value) at 2.4–3 µm wavelength. In additions, the Vickers hardness and fracture toughness of samples can reach 8.48 GPa and 1.45 MPa m1/2, respectively. This result proves that the high activity of mesoporous Y2O3 is considered to be an important means for preparing high-performance fine Y2O3 ceramics at low sintering temperature.  相似文献   

15.
《Ceramics International》2020,46(10):16447-16451
B4C ceramics with different carbon contents were fabricated by pressureless sintering at 2150 °C with SiC as a sintering additive. The effects of carbon content on microstructure, electrical properties and mechanical properties of B4C ceramics were investigated. More carbon content leads to a reduction in grain size and an increase in relative density. With the increase of carbon content, the electrical conductivity of the sample gradually changes from nonlinear to linear because of the formation of a conductive network in the sample. The electrical percolation is obtained when the C content is up to 10 wt%, and the electrical resistivity of the corresponding sample is 56.2 Ω cm. In terms of mechanical properties, flexural strength and elastic modulus shows a slight improvement, fracture toughness remains almost constant while Vickers hardness increases significantly.  相似文献   

16.
Novel bulk SiOC/spodumene composites have been developed by spark plasma sintering (SPS) at relatively low temperature (1200–1400 °C). Spodumene is a cheap and natural available lithium aluminosilicate mineral which acts as meltable/active filler. At 1300–1400 °C, the Al migrates toward the glassy matrix producing a Si-Al-O network and the crystallization of α-cristobalite. The Cfree phase also experiences a deep transformation. The epitaxial growth of few-layered graphene over SiC particles occurs at 1400 °C. An increase in the phonon transport is observed (36%, 1.28 – 2.14 Wm−1K−1) associated to the reduction of the interface resistance between the partially crystallized SiO2 matrix and the SiC nano-wires/graphene-like carbon conductive phase. The electrical conductivity increases (1.14 ×10−2 – 8.1 Sm−1) due to the densification reached and an increasing ordering degree of the tortuous Cfree phase with a high quality of interconnection and crystallization. Raman parameters are determinant to understand the thermal and electrical response.  相似文献   

17.
《Ceramics International》2022,48(4):5119-5129
The spark plasma sintering (SPS) technique was found to effectively improve the mechanical properties of TiB2–SiC ceramic by forming a unique interlocking structure. This study investigated the phase transition process of the hexagonal micro-platelets TiB2 powders with self-assembled structure during the molten-salt-mediated carbothermal reduction and its effect on promoting the mechanical properties of TiB2-based ceramics. It was found that the SPS approach ensured a highly densified TiB2–SiC ceramics with enhanced Vickers hardness of 21.0 ± 1.3 GPa and fracture resistance of 7.8 ± 0.3 MPa m1/2. The performance enhancement of the resultant TiB2–SiC composite was attributed to the interlocking structure from the original anisotropic TiB2 powders, which could effectively absorb the energy and facilitate the crack deflection.  相似文献   

18.
《Ceramics International》2016,42(11):12686-12693
Single-stage fabrication of SiC ceramics by a combination of self-propagating high temperature synthesis (SHS) and spark plasma sintering (SPS) is reported. SHS+SPS is demonstrated to be an efficient method for production of SiC ceramics with density 3.1 g/cm3, hardness of 24 GPa and toughness of 5 MPa m1/2. The starting material for the process is fine (50–300 nm in size) highly reactive powder, which involves composite particles of elemental carbon and silicon. This powder was prepared using a high-energy ball milling (HEBM). To optimize precursor preparation conditions, the structure transformation in nano-composite Si/C particles at different HEBM stages is also investigated.  相似文献   

19.
《Ceramics International》2022,48(17):24592-24598
Single-phase Al4SiC4 powder with a low neutron absorption cross section was synthesized and mixed with SiC powder to fabricate highly densified SiC ceramics by hot pressing. The densification of SiC ceramics was greatly improved by the decomposition of Al4SiC4 and the formation of aluminosilicate liquid phase during the sintering process. The resulting SiC ceramics were composed of fine equiaxed grains with an average grain size of 2.0 μm and exhibited excellent mechanical properties in terms of a high flexure strength of 593 ± 55 MPa and a fracture toughness of 6.9 ± 0.2 MPa m1/2. Furthermore, the ion-irradiation damage in SiC ceramics was investigated by irradiating with 1.2 MeV Si5+ ions at 650 °C using a fluence of 1.1 × 1016 ions/cm2, which corresponds to 6.3 displacements per atom (dpa). The evolution of the microstructure was investigated by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The breaking of Si–C bonds and the segregation of C elements on the irradiated surface was revealed by XPS, whereas the formation of Si–Si and C–C homonuclear bonds within the Si–C network of SiC grains was detected by Raman spectroscopy.  相似文献   

20.
The elasto-plastic response of the precursor derived Si–B–C–N ceramics upon contact loading was determined by depth sensing nanoindentation technique. The indentation response of as-thermolyzed Si–B–C–N ceramic was compared with the heat-treated counterpart. The as-thermolyzed ceramic was X-ray amorphous and the heat-treated ceramic was phase separated and crystallized. The hardness and reduced elastic modulus values of the as-thermolyzed ceramic were ~16 GPa and ~172 GPa, respectively. The reduction in hardness to ~9 GPa in the heat-treated ceramic was attributed to phase separation and crystallization of SiC and Si3N4. Furthermore, high elastic recovery with a plastic work ratio of ~0.3 was observed and ascribed to volume controlled deformation mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号