首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrospun nanofibers are prepared through electrospinning followed by post-treatment and preferred to use in catalytic applications. The electrospinning provides advantages for active catalysts design based on activity profiles and features of catalyst. In the present study, we fabricated nano-crystalline cobalt oxide (Co3O4) catalyst by electrospinning technique followed by thermal conditioning. Polyacrylonitrile (PAN) based Co as-spun mats (Co/NMs) with homogeneous diameter were prepared by electrospinnig process under several conditions as applied voltage (15–25 kV), working distance (5–7.5 cm) with the feed rate of 1 ml min−1. The calcination process as a post-treatment was applied at different temperatures (232 °C, 289 °C and 450 °C) to obtain electrospun nano-crystalline Co3O4 catalyst. Co/NMs catalysts were characterized by XRD, SEM, TEM, XPS, FT-IR, TG/DTG, and ICP-MS techniques. The parametrically study was performed for evaluating the hydrogen production activity of catalyst from sodium borohydride (NaBH4, SBH) and its originated compounds as ammonia borane (NH3BH3, AB) and methyl-amine borane (CH3NH2BH3, MeAB). The relation between the internal-external properties and catalytic activities of catalysts for hydrogen production was investigated. The beadless Co/NMs-1 catalyst with homogeneous diameter was obtained under electrospinnig process conditions at 15 kV applied voltage and 7.5 cm working distance. All catalysts showed activity for hydrogen production, also the significant effect of post treatment process was observed on the catalytic activity as given order: Co/NMs-1450 > Co/NMs-1289 > Co/NMs-1 > Co/NMs-1232. Furthermore, mesoporous Co3O4 cubic crystals (26 nm) in fibrous architecture was prepared by 450 °C-post-treatment. Hydrogen production rates were recorded at 60 °C as 2.08, 2.20, and 6.39 l H2.gcat−1min−1 for NaBH4, CH3NH2BH3, and NH3BH3, respectively.  相似文献   

2.
The hydrolysis of ammonia borane (NH3BH3) is recognized as an efficient way of hydrogen generation if it can be effectively catalyzed. In this work, a series of cobalt–molybdenum–boron (Co–Mo–B) nanoparticles (NPs) on copper (Cu) foil are introduced as catalysts for NH3BH3 hydrolysis by electroless deposition method. The influence of the depositing pH value on the catalytic property is investigated by adjusting the pH value ranged from 10.5 to 12.0. By optimizing the value to 11, the ultrafine Co–Mo–B NPs with the grain size around 4.3 nm show the best catalytic property for NH3BH3 hydrolysis. The hydrogen generation rate reaches 5818.0 mL·min−1·g−1 when the hydrolysis temperature is 298 K. The thermodynamic tests show that the lower activation energy (Ea) is estimated to be 59.3 kJ·mol−1. It can be found that the catalytic property in this work overtakes that of partial non-precious metal NPs, and is even better than some precious metal NPs previously reported. The hydrolysis reaction of NH3BH3 catalyzed by ultrafine Co–Mo–B NPs is a non-spontaneous process. In addition, the cycling ability of the ultrafine Co–Mo–B NPs is also studied and the results demonstrate that the catalyst is a recyclable one toward the hydrolysis of NH3BH3 under mild reaction conditions.  相似文献   

3.
The catalytic dehydrogenation of ammonia borane (NH3BH3, AB) molecule is most frequently employed by metal catalysts, but a reliable dehydrogenation mechanism in molecular level has yet to be fully illuminated. Herein, adopting the density functional theory (DFT) method, the dehydrogenation mechanism and performance of NH3BH3 under the transition metal catalysts (Cu/MgO, Co/MgO, CuCo/MgO) were studied. The calculated results show that the dehydrogenation mechanism of AB refers to stepwise dehydrogenation mechanism: AB is adsorbed in the transition metal catalysts firstly, then one H(N) atom transferred to H(B) of ―BH3 and to form H2 molecule via the broken of B―H and N―H bond, finally, H2 molecule desorption from the catalyst complexes. Among the transition metal catalysts, CuCo/MgO have the perfect catalytic activity in dehydrogenation reaction of NH3BH3, its barrier energy of the feasible pathway (path A) is 22.26 kcal/mol, which is lower than the barrier energy of AB‐Cu/MgO(28.13 kcal/mol), AB‐Co/MgO(27.46 kcal/mol), and the results of thermogravimetric analysis further verified the reasonability of DFT calculational results. Besides, partial density of states calculational results show the electron orbital hybridization of Cu, Co atom may account for the excellent catalytic performance of CuCo/MgO(100) compared with the Cu/MgO(100) and Co/MgO(100) in dehydrogenation process of AB.  相似文献   

4.
Developing highly efficient and stable supported bimetallic nanoparticles catalysts via a facile strategy is one of the most admirable methods for sustainable hydrogen production from borohydride hydrolysis. Herein, we developed a facile technology for rapidly and straightforwardly manufacturing Pt–Ni bimetallic nanoparticles (BNPs) supported by partially reduced graphene oxide (prGO) with excellent catalytic activity and outstanding durability for hydrogen production from KBH4 and NH3BH3 alkaline solution. The uniformly dispersed Pt40–Ni60 BNPs with a statistical size of around 2.6 nm exhibited a surprising catalytic activity of 23,460 mol-H2·h?1·mol-Pt?1 at 308 K, moreover, whose activity was high up to 80% of the first time even after 30 runs, demonstrating an outstanding stability. The apparent activation energy for dehydrogenation of KBH4 and NH3BH3 were respectively about 27.8 and 33.6 kJ/mol for the prepared Pt40–Ni60/prGO catalyst. The extraordinary catalytic activity of the Pt40–Ni60/prGO catalyst owing to the strong charge transfer effect between Pt–Ni BNPs and graphene.  相似文献   

5.
In this work, cobalt–tungsten–boron nanoparticles (Co–W–B) have been successfully deposited on foam Ni to manufacture thin-film catalysts by electroless plating technique and applied in hydrogen generation from ammonia borane (NH3BH3) hydrolysis. Physicochemical properties of Co–W–B nanoparticles are characterized by XRD (Powder X–ray diffraction), SEM (Scanning electron microscopy), and EDS (Energy dispersive X–ray spectroscopy). It is observed that Co–W–B showed irregular spherical structure on the surface of foam Ni substrate. An increase of depositional pH value in the preparation process leads to the change of particle size. When the pH value is equal to 11.5, as-synthesized Co–W–B exhibits the smaller particle size, which suggests that depositional pH value has directly impacted the nucleation and growth of catalysis particles. The optimized Co–W–B catalyst displays higher catalytic activity toward NH3BH3 hydrolysis with a specific rate of hydrogen generation of 12933.3 mL min?1·g?1 at room temperature. Moreover, the lower apparent activation energy of 47.3 kJ mol?1 is achieved. Compared with previously reported catalysts, the as-obtained catalytic performance is situated at the better rank. Moreover, the reusability has been investigated under the mild NH3BH3 hydrolysis conditions. It reveals that as-fabricated thin-film Co–W–B maintains excellent durability after five cycles. A possible mechanism for the released hydrogen from NH3BH3 hydrolysis using Co–W–B catalyst has been proposed.  相似文献   

6.
The development of inexpensive and high performing catalysts for ammonia borane (NH3BH3) hydrolysis is crucial for hydrogen production. In our research, a high-performance plate-like Cu2O–CoO nanocomposite catalyst for NH3BH3 hydrolysis has been developed for the first time. In the hydrolytic reaction, both Cu2O and CoO are separately inactive, while Cu2O–CoO nanoplates show a high turnover frequency of 34.1 molhydrogen min−1 molcat−1, which is attributed to the synergistic effect between Cu2O and CoO. It is interesting to discover that the induction time for the hydrolytic reaction is reduced to null when a small amount of Cu2O is introduced into CoO. The reaction kinetics of NH3BH3 hydrolysis catalyzed by Cu2O–CoO is also investigated. This work may provide other researchers some valuable insights into designing inexpensive and synergistic catalysts with enhanced catalytic activity for NH3BH3 hydrolysis for hydrogen production.  相似文献   

7.
Addressed herein is the in situ synthesis of a PAMAM dendrimer-encapsulated palladium(0) NPs (Pd(0)/Dnd) during the methanolysis of ammonia borane (AB) and the catalytic performance of the yielded Pd(0)/Dnd nanocatalysts in hydrogen production from the methanolysis of AB under ambient conditions. A two-step procedure that includes the impregnation of Pd(II) ions via their coordination to –NH2 groups of the dendrimer and then reduction of Pd(II) ions into the dendrimer-encapsulated Pd(0) NPs by AB during the methanolysis reaction was followed for the synthesis of Pd(0)/Dnd nanocatalysts. However, apart from the existing reports on the synthesis of dendrimer-encapsulated metal NPs, the present study includes for the first time the examination of effect of generation size (G4-G6), core type (ethylene diamine (E) or Jeffamine (P)) and terminal groups (-NH2, –COOH and –OH) of a PAMAM dendrimer on the stability, particle size, morphology and catalytic activity of metal NPs. After finding the optimum Pd(0)/Dnd catalysts considering all these effects, a detailed kinetic study comprising the effect of catalyst and AB concentrations as well as temperature was conducted by monitoring the hydrogen production from the methanolysis of AB. The best catalytic activity in the methanolysis of AB was obtained by using a PAMAM dendrimer with generation G6, amine terminal groups and Jeffamine core (P6.NH2) encapsulated Pd(0) NPs, providing the highest initial turnover frequency (TOF) of 55.8 mol H2.mol Pd−1.min−1 and apparent activation energy (Eaapp) of 48 ± 3 kJ.mol−1 at room temperature.  相似文献   

8.
In this study, we report the results of a kinetic study on the hydrogen (H2) generation from the hydrolysis of ammonia borane (NH3BH3) catalyzed by Platinum supported on carbon nanotube-graphene hybrid material (Pt/CNT-G). Synthesized catalyst was characterized by TGA, XRD, CP-OES, TEM and SEM-EDX techniques. Characterization studies have shown that the CNT-G hybrid support material provides desired distribution of the Pt particles on the support material. The effect of various parameters such as catalyst loading, reaction temperature, effect of NaOH and the effect of NH3BH3 concentration are also determined. Experimental results showed that the Pt/CNT-G catalyst exhibited high catalytic activity on NH3BH3 hydrolysis reaction to release H2. It has been found that Pt/CNT-G catalyst shows low activation energy of 35.34 kJ mol−1 for hydrolysis reaction of NH3BH3. Pt/CNT-G catalyst also exhibited high catalytic activity with turnover frequency (TOF) of 135 (molH2/molcat.min). Therefore, the synthesized Pt/CNT-G catalyst is a potential candidate for enhanced H2 generation through NH3BH3 hydrolysis.  相似文献   

9.
Bimetallic-based RuCo and RuCu catalysts, supported on γ-Al2O3 (1.5 wt% Ru as theoretical value), were synthesized by polyol method. Ru, Co, and Cu acetylacetonates were used as precursors and ethylene glycol as reducing agent. The as-synthesized catalysts were characterized by SEM, TEM, XRD and XPS, and tested in ammonia-borane (NH3BH3) hydrolytic dehydrogenation at variable amount of catalyst (10-30 wt%), concentration of NH3BH3 (1.0-0.65 M), and temperatures (50-65 °C). The reactions were monitored by volumetric (inverted burette) and spectroscopic methods (11B and 11B{1H} NMR). It was found that the best bimetallic catalysts are those having a molar ratio Ru:Co and Ru:Cu of 1:1 such as RuCo > RuCu ∼ Ru. They, i.e. RuCo and RuCu, consist of nanosized spherical particles of Ru0Co(OH)2 and Ru0Cu0, respectively. Kinetic investigation highlights similar rate laws with activation energies of 47 kJ mol−1 and 52 kJ mol−1, respectively, and, for both, reaction orders of 1 versus both the NH3BH3 and the catalytic free sites concentrations. 11B and 11B{1H} NMR investigation confirmed (i) a more effective NH3BH3 hydrolytic dehydrogenation in the presence of RuCo catalyst even though a loss of activity after the first run was observed for both catalysts, and (ii) a rapid NH3BH3 hydrolysis with initial formation of B(OH)4, which besides favors equilibriums of formation of polyborates. These results are reported and the reaction mechanism discussed herein.  相似文献   

10.
Among the cuprous metal oxides of the delafossite type, which are generally formulated as CuMO2 (M = Al, Cr, Fe, Ga, Mn), the most promising is the CuMnO2 structures. CuMnO2 material, named crednerite, is a very interesting delafossite derivative with potential applications in many fields, mainly catalyst, photoelectrochemical cells and multiferroic tools. Herein, we report fabrication, characterization, and application of amine-terminated CuMnO2 (CuMnO2–NH2) supported palladium nanoparticles (Pd/CuMnO2–NH2) as highly efficient and recyclable catalysts for the hydrogen production from the methanolysis of ammonia-borane (AB). The results of characterization using P-XRD, TEM, HRTEM, TEM-EDX, XPS, SEM, SEM-elemental mapping, and ICP-OES disclose that Pd (0) nanoparticles were well spread on the surface of CuMnO2–NH2 with a mean particle size of 3.91 ± 0.33 nm. Pd/CuMnO2–NH2 shows high catalytic activity in the methanolysis of AB with an initial turnover frequency of 146.68 min?1 at 25 ± 0.1 °C which is one of the highest values ever reported for AB methanolysis in the literature. Besides, the extreme stability of Pd/CuMnO2–NH2 takes it a recyclable heterogeneous catalyst in this catalytic conversion.  相似文献   

11.
We report the preparation of Ni3B and carbon-supported Ni3B (denoted as Ni3B/C) nanoparticles, and their catalytic performance for hydrogen generation from hydrolytic dehydrogenation of ammonia borane (NH3BH3, AB). Ni3B and Ni3B/C were prepared via a chemical reduction and crystallization in tetraethylene glycol solution. The obtained Ni3B catalysts are in well-defined crystalline state and Ni3B/C catalysts have a high dispersion in the carbon. The hydrogen generation measurement shows that the carbon-supported Ni3B presents enhanced catalyst activity during hydrolytic dehydrogenation of AB. Among the as-prepared Ni3B/C catalysts, Ni3B/C with 34.25 wt% Ni3B loading displays the best catalytic activity, delivering a high hydrogen release rate of 1168 mL min−1 g−1 and the lower activation energy of 46.27 kJ mol−1. The kinetic results show that the hydrolysis is a first-order reaction in catalyst concentration, while it is a zero-order in AB concentration. Furthermore, the Ni3B/C is a recyclable catalyst under mild reaction conditions, indicating that the carbon-supported Ni3B is a promising catalyst for AB hydrolytic dehydrogenation.  相似文献   

12.
Epoxy-activated acrylic particulate polymer, namely Eupergit CM, supported Co–Fe–Ru–B catalyst (EP/Co–Fe–Ru–B) for the first time was used to produce H2 from hydrolysis of NH3BH3. The EP/Co–Fe–Ru–B showed very effective performance in the production of H2 from the hydrolysis of NH3BH3. Various techniques such as XRD, SEM-EDS, ICP-OES, and TEM have been used to characterize these catalysts. The parameters on the hydrolysis reaction of NH3BH3 such as the effect of metal amount, the effect of Ru percentage, the effect of NH3BH3 concentration, the effect of NaOH concentration, the amount of catalyst, temperature, and catalyst durability were investigated in detail. Eupergit CM based polymer support and Ru particles have been found to be highly effective in H2 production reactions. The hydrogen production rate (HGR) of the EP/Co–Fe–Ru–B catalyst was found to be 36,978 mL/min/gcat, which was quite good compared to the values reported in the literature. In addition, the activation energy (Ea) of the polymer-supported Co–Fe–Ru–B catalyst was determined as 24.91 kJ/mol.  相似文献   

13.
Ru-Co nanoparticles prepared in nano-size by combustion derived of citric acid used sol-gel technique followed by calcination process at 450 °C. The external and internal properties of nano-sized catalyst were characterized by XRD, XPS, SEM, TEM, ICP-OES, and N2 sorption techniques. The characterization results proved that nano-sized catalyst was mixture of cubic Co3O4 (18 nm) and tetragonal RuO2 (40 nm) crystals with mesoporous structure (12.64 m2g-1). Insight into the role of solvents for enhancing hydrogen production from Ru-Co nanoparticles catalyzed sodium borohydride (NaBH4, SBH) was systematically studied by altering the dehydrogenation medium with water or methanol. The reaction kinetic performance of nano-sized catalyst was evaluated by performing both hydrogen generation reactions at various reaction temperatures, initial SBH concentration, and catalyst dosage to evaluate the hydrogen generation activity. Ru-Co nanoparticles exhibited exclusive catalytic performance for hydrogen generation by hydrolysis and methanolysis of SBH. The apparent activation energies (Ea) for the catalytic hydrolysis and methanolysis of SBH over Ru-Co nanoparticles were determined to be 20.02 kJ mol−1 and 54.38 kJ mol−1, respectively. Furthermore, Ru-Co nanoparticles also performed satisfied stability for both hydrolysis and methanolysis reactions. Beside both hydrogen generation was achived with fully conversion of SBH, Ru-Co nanoparticles promised good recyclability for at least 5 cycle for methanolysis of SBH.  相似文献   

14.
The co-production of ethylene glycol and methanol via ethylene carbonate hydrogenation derived from CO2 has attracted great concerns because of the promising chemical utilization of CO2 in large-scale. Copper-based catalysts are widely concerned in hydrogenation of ester due to the high catalytic efficiency and low cost, but the stability of copper-based catalyst is poor and needs to be further improved. In this study, the modification Cu–C@SiO2-R catalyst with graphite oxide was prepared by using Cu3(BTC)2 as the precursor and ammonia evaporation method, and was applied in ethylene carbonate hydrogenation to synthesis ethylene glycol and methanol. Furthermore, the catalysts were characterized in detail. The results showed that the Cu–C@SiO2-R catalyst was modified with graphite oxide, the average size of Cu particles was 2.9 nm and Cu particles had good dispersion. In addition, both Cu–C@SiO2-R and Cu@SiO2-R catalysts had similar ratio of Cu+/(Cu0+Cu+). In a batch reactor, under 453 K, 5 MPa, 4 h, the catalytic efficiency was 80.0% EC conversion 92.2% EG and 70.8% MeOH selectivity showing excellent catalytic performance capability of Cu–C@SiO2-R catalyst. In long-term experiment, the Cu–C@SiO2-R catalyst showed excellent stability after using for 264 h. The activity was 0.63 gEC gcat?1 h?1, and 100.0% EC conversion 99.9% EG and 85.8% MeOH selectivity could be achieved in a fixed bed. After the long-term experiment, the Cu+/(Cu++Cu0) ratio in Cu–C@SiO2-R catalyst kept at around 0.48. In contrast, the Cu+/(Cu++Cu0) ratio in Cu@SiO2-R catalyst decreased sharply from 0.48 to 0.38. The stability of the structure and the balance of valence of Cu were considered to be responsible to the stability of Cu–C@SiO2-R catalyst, because the graphite oxide not only kept the Cu+/(Cu0+Cu+) ratio stability, but also restrained the aggregation of Cu particles and loss of copper. This work provides an in-depth understanding of the stabilization mechanism of Cu and can be a reference for the industrial application of ethylene carbonate hydrogenation.  相似文献   

15.
The effects of Fe and Cr species on Cu-based supported and spinel oxide catalysts during methanol steam reforming (MSR) reaction and the Cu–Fe–Cr synergy were investigated. Herein, a series of Al2O3 supported catalysts were prepared. And their MSR performance was evaluated. The addition of Fe and Cr had a significant promotion on MSR performance compared with the corresponding Cu-based catalyst. In order to unravel the beneficial effect, CuFe, CuCr, CuAl, CuFeAl, CuCrAl and CuFeCr catalysts were synthesized by the hydrothermal method. And BET, XRD, SEM-EDX mapping, HRTEM, H2-TPR, NH3-TPD, CH3OH-TPD and XPS characterizations were performed. Results showed that CuFeCr catalyst possessed superior MSR behaviors. At the temperature of 260–270 °C, its methanol conversion was maintained above 80% during a time-on-stream stability of 100 h. And it exhibited better fast start-up behaviors than commercial catalyst. In combination with the characterizations, it was assumed that the excellent catalytic performance of the CuFeCr catalyst was attributed to its moderate Cu+ content and Ovac/Oads ratio. And it was the result of the Cu–Fe–Cr synergistic effect.  相似文献   

16.
《Journal of power sources》2006,163(1):364-370
We have studied catalytic performance of supported non-noble metals for hydrogen generation from aqueous NH3BH3 at room temperature. Among the tested non-noble metals, supported Co, Ni and Cu are the most catalytically active, with which hydrogen is released with an almost stoichiometric amount from aqueous NH3BH3, whereas supported Fe is catalytically inactive for this reaction. Support effects on the catalytic activity have been investigated by testing the hydrogen generation reaction in the presence of Co supported on γ-Al2O3, SiO2 and C and it is found that the Co/C catalyst has higher activity. Activation energy for hydrogen generation from aqueous NH3BH3 in the presence of Co/γ-Al2O3 was measured to be 62 kJ mol−1; this may correspond to the step of BN bond breaking. Particle size, surface morphology and surface area of the supported metal catalysts were examined by X-ray diffraction (XRD), transmission electron microscope (TEM), energy dispersive X-ray (EDX) and BET experiments. It is found that with decreasing the particle size the activity of the supported catalyst is increased. The low-cost and high-performance supported non-noble metal catalysts may have high potential to find its application to the hydrogen generation for portable fuel cells.  相似文献   

17.
This work investigates the effect of the addition of small amounts of Ru (0.5‐1 wt%) to carbon supported Co (10 wt%) catalysts towards both NaBH4 and NH3BH3 hydrolysis for H2 production. In the sodium borohydride hydrolysis, the activity of Ru‐Co/carbon catalysts was sensibly higher than the sum of the activities of corresponding monometallic samples, whereas for the ammonia borane hydrolysis, the positive effect of Ru‐Co systems with regard to catalytic activity was less evident. The performances of Ru‐Co bimetallic catalysts correlated with the occurrence of an interaction between Ru and Co species resulting in the formation of smaller ruthenium and cobalt oxide particles with a more homogeneous dispersion on the carbon support. It was proposed that Ru°, formed during the reduction step of the Ru‐Co catalysts, favors the H2 activation, thus enhancing the reduction degree of the cobalt precursor and the number of Co nucleation centers. A subsequent reduction of cobalt and ruthenium species also occurs in the hydride reaction medium, and therefore the state of the catalyst before the catalytic experiment determines the state of the active phase formed in situ. The different relative reactivity of the Ru and Co active species towards the two investigated reactions accounted for the different behavior towards NaBH4 and NH3BH3 hydrolysis.  相似文献   

18.
19.
We report on CoMoB nanoparticles supported on foam Ni as catalysts for hydrogen generation from hydrolysis of ammonia borane (NH3BH3) solution. The CoMoB/foam Ni catalysts with different molar ratios of Co2+and MoO42− were synthesized via the electroless-deposition technique at ambient temperature. In order to analyze the phase composition, chemical composition, microstructure, and electron bonding structure of the as-prepared samples, powder X–ray diffraction (XRD), inductively coupled plasma-mass spectroscopy (ICP-MS), scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were used. The results showed that CoMoB nanoparticles were variously dispersed on the surface of the foam Ni and the catalytic activity correlated with the molar ratio of Co2+ and MoO42−. The highest hydrogen generation rate was 5331.0 mL min−1 gcat−1 at 298 K, and the activation energy was calculated to be 45.5 kJ mol−1 toward the hydrolysis of NH3BH3 solution. The better catalytic activity was largely attributed to the smaller particle size, higher surface roughness and the novel three-dimensional cone-like architectures of the obtained samples. The kinetic results show that the hydrolysis of NH3BH3 is a first-order reaction in catalyst concentration. In addition, the reusability experiment exhibited that the catalytic activity was reduced after 5 cycles and the reason of the decay was also investigated.  相似文献   

20.
This paper investigates the effect of an electroplated Co–P catalyst on hydrogen generation kinetics from hydrolysis of NH3BH3. The Co–P catalyst is composed of an amorphous Co–P phase and Co nanoparticles. An increase in NH3BH3 concentration caused the hydrogen generation rate to increase dramatically. The Co–P catalyst shows a large hydrogen generation rate for 2 wt% NH3BH3 solution at 30 °C. This is 1.8 times higher than that of the Pt/C catalysts and 6 times higher than that of Ru catalysts. The activation energy for hydrolysis of NH3BH3 by the Co–P catalyst is calculated to be 22 kJ/mol, which is close to that of noble metal-based catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号