首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NaB3H8 has advantages over NaBH4 and NH3BH3, two most widely studied chemical hydrides for hydrogen storage via hydrolysis. NaB3H8 has an extraordinary high solubility in water and thus possesses a high theoretical capacity of 10.5 wt% H via hydrolysis, in contrast to 7.5 wt% for NaBH4 and 5.1 wt% for NH3BH3. NaB3H8 is reasonably stable in water which makes it unnecessary to add corrosive NaOH as a stabilizer as the case for NaBH4. Furthermore, hydrolysis of NaB3H8 can be catalyzed by a Co-based catalyst with fast kinetics that is comparable to Ru-based catalysts. Therefore, cost-effective hydrolysis of NaB3H8 is possible for practical applications. A high capacity of 7.4 wt% H was achieved when water was included in the materials weight.  相似文献   

2.
Metal ion-imprinted (IIH) poly(2-acrylamido-2-methyl-1-propansulfonic acid) p(AMPS) hydrogels were prepared by using a free-radical polymerization technique in the presence of metal ions (M = Co (II) or Ni (II)). Using metal ion-imprinted hydrogels (IIHs), and non-metal ion-imprinted (NIH) hydrogels as template for the preparation of Co and Ni catalyst systems, the hydrolysis kinetics of NaBH4 and NH3BH3 were investigated. The catalytic performances of IIHs and NIHs were compared in terms of effect on hydrolysis kinetics of NaBH4 and NH3BH3. To increase the amounts of Co nanoparticles within p(AMPS) hydrogel for better catalytic activity, several reloading and reduction cycles of Co (II) ions were carried out, and the prepared p(AMPS)-Co composite catalyst systems were tested for hydrogen generation from the hydrolysis of NaBH4. As the number of Co (II) loading and reduction cycles increased, the amount of metal catalysts and the catalytic performance of composites increased. Kinetics studies were carried out on three times Co (II) ion loaded and reduced p(AMPS)-Co catalyst systems (containing 36.80 mg/g Co). Three time Co (II)-loaded catalyst systems provided very fast hydrolysis kinetics for NaBH4, and provided magnetic field responsive behavior. The hydrolysis reaction of NaBH4 was completed within 50 s, under the described conditions at 60 °C. It was demonstrated that the synthesized catalyst systems can be used ten times repetitively without significant loss of catalytic activity (86.5%).  相似文献   

3.
This paper investigates the effect of an electroplated Co–P catalyst on hydrogen generation kinetics from hydrolysis of NH3BH3. The Co–P catalyst is composed of an amorphous Co–P phase and Co nanoparticles. An increase in NH3BH3 concentration caused the hydrogen generation rate to increase dramatically. The Co–P catalyst shows a large hydrogen generation rate for 2 wt% NH3BH3 solution at 30 °C. This is 1.8 times higher than that of the Pt/C catalysts and 6 times higher than that of Ru catalysts. The activation energy for hydrolysis of NH3BH3 by the Co–P catalyst is calculated to be 22 kJ/mol, which is close to that of noble metal-based catalysts.  相似文献   

4.
Epoxy-activated acrylic particulate polymer, namely Eupergit CM, supported Co–Fe–Ru–B catalyst (EP/Co–Fe–Ru–B) for the first time was used to produce H2 from hydrolysis of NH3BH3. The EP/Co–Fe–Ru–B showed very effective performance in the production of H2 from the hydrolysis of NH3BH3. Various techniques such as XRD, SEM-EDS, ICP-OES, and TEM have been used to characterize these catalysts. The parameters on the hydrolysis reaction of NH3BH3 such as the effect of metal amount, the effect of Ru percentage, the effect of NH3BH3 concentration, the effect of NaOH concentration, the amount of catalyst, temperature, and catalyst durability were investigated in detail. Eupergit CM based polymer support and Ru particles have been found to be highly effective in H2 production reactions. The hydrogen production rate (HGR) of the EP/Co–Fe–Ru–B catalyst was found to be 36,978 mL/min/gcat, which was quite good compared to the values reported in the literature. In addition, the activation energy (Ea) of the polymer-supported Co–Fe–Ru–B catalyst was determined as 24.91 kJ/mol.  相似文献   

5.
The addition of NaBH4 to Co–ethylenediaminetetraacetate (Co–EDTA) and Co–citrate solutions at 25 °C does not lead to generation of hydrogen. However, in the presence of Co‐based catalysts synthesized via chemical reduction of Co–EDTA and Co–citrate complexes with NaBH4 at elevated temperature, an intensive generation of H2 took place. In this study, the reduction mechanism of both complexes was elucidated by using various techniques. From the results of attenuated total reflection and mass spectrometry analysis, it was suggested that NaBH4 was oxidized to NaBO2 and that organic ligands of Co complexes were decomposed to gaseous hydrocarbons, such as C2H4, C3H4, and/or C2H3N. Structural characterizations of X‐ray diffraction, scanning transmission electron microscopy, transmission electron microscope, energy‐dispersive spectroscopy, and X‐ray photoelectron spectra on the catalysts revealed that Co(OH)2, metallic cobalt, and cobalt borate were obtained in both cases. The morphology of Co(OH)2 and the dispersion of metallic cobalt and cobalt borate nanoparticles were significantly different. In the case of the catalyst prepared from Co–EDTA, the nanoparticles of Co species aggregated with diameters from 100 to several hundred nanometers on Co(OH)2 slabs. On the catalyst prepared from Co–citrate, the Co(OH)2 formed sheets, and the nanoparticles of Co species formed clusters of 5–10 nm in diameter, which are dispersed well on the Co(OH)2 sheet. The catalyst obtained from Co–citrate showed higher catalytic activity on hydrolysis reaction of NaBH4 than that from Co–EDTA. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Cobalt-containing magnetic core-shell structures are alternative catalysts with better catalytic performance for hydrogen evolution. In this study, a facile route is adopted to fabricate a CoOx@carbon-reduced graphene oxide composite containing Co nanoparticle cores, carbon shells, and reduced graphene oxide. During hydrogen generation through the catalytic hydrolysis of NaBH4 and NH3BH3, the surface of CoOx cores provides active catalytic sites, and the carbon shells protect the CoOx cores from aggregating into gigantic cobalt oxide granules. The magnetism of CoOx anchored onto reduced graphene oxide sheets achieves effectively a momentum transfer assisted by a motional external magnetic field. In a batch reactor, the composite exhibits a higher catalytic activity in a self-stirring mode than that in a magneton-stirring mode. This simple and efficient synthesis strategy is highly promising for the next development of both facile hydrogen generation and core-shell composite functional materials.  相似文献   

7.
Electrospun nanofibers are prepared through electrospinning followed by post-treatment and preferred to use in catalytic applications. The electrospinning provides advantages for active catalysts design based on activity profiles and features of catalyst. In the present study, we fabricated nano-crystalline cobalt oxide (Co3O4) catalyst by electrospinning technique followed by thermal conditioning. Polyacrylonitrile (PAN) based Co as-spun mats (Co/NMs) with homogeneous diameter were prepared by electrospinnig process under several conditions as applied voltage (15–25 kV), working distance (5–7.5 cm) with the feed rate of 1 ml min−1. The calcination process as a post-treatment was applied at different temperatures (232 °C, 289 °C and 450 °C) to obtain electrospun nano-crystalline Co3O4 catalyst. Co/NMs catalysts were characterized by XRD, SEM, TEM, XPS, FT-IR, TG/DTG, and ICP-MS techniques. The parametrically study was performed for evaluating the hydrogen production activity of catalyst from sodium borohydride (NaBH4, SBH) and its originated compounds as ammonia borane (NH3BH3, AB) and methyl-amine borane (CH3NH2BH3, MeAB). The relation between the internal-external properties and catalytic activities of catalysts for hydrogen production was investigated. The beadless Co/NMs-1 catalyst with homogeneous diameter was obtained under electrospinnig process conditions at 15 kV applied voltage and 7.5 cm working distance. All catalysts showed activity for hydrogen production, also the significant effect of post treatment process was observed on the catalytic activity as given order: Co/NMs-1450 > Co/NMs-1289 > Co/NMs-1 > Co/NMs-1232. Furthermore, mesoporous Co3O4 cubic crystals (26 nm) in fibrous architecture was prepared by 450 °C-post-treatment. Hydrogen production rates were recorded at 60 °C as 2.08, 2.20, and 6.39 l H2.gcat−1min−1 for NaBH4, CH3NH2BH3, and NH3BH3, respectively.  相似文献   

8.
Cobalt clusters-silica nanospheres (15-30 nm) were synthesized using a Co(NH3)6Cl3 template method in a polyoxyethylene-nonylphenyl ether/cyclohexane reversed micelle system followed by in situ reduction in aqueous NaBH4/NH3BH3 solutions. The cobalt clusters are located either inside or on the outer surface of the silica nanospheres as shown by the transmission electron microscope (TEM)/energy dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS) measurements. The cobalt-silica nanospheres have a high catalytic activity for the hydrolysis of ammonia borane that generates a stoichiometric amount of hydrogen, and can be efficiently cycled and reused 10 times without any significant loss of the catalytic activity.  相似文献   

9.
Ru-active carbon (Ru/C) catalysts are prepared by impregnation reduction method for hydrogen generation via hydrolysis of alkaline sodium borohydride (NaBH4) solution. The corresponding activity and durability of the prepared catalysts are tested in an immobile bed reactor. The variation of hydrogen generation rate with the increasing of flux and concentration of NaBH4 solution is measured. The durability of the catalysts prepared under various reductive pH values and reductants is tested by using different concentrations of NaBH4 solution (10 & 15 wt%). It is found that the durability of catalyst in 15 wt% NaBH4 solution is longer than that in 10 wt% NaBH4 solution. The deactivation of Ru/C catalysts is considered as the comprehensive effect of three factors: the loss of Ru, the deposition of byproducts on the catalyst surface and the aggregation of Ru particles.  相似文献   

10.
The hydrolysis of ammonia borane (NH3BH3) is recognized as an efficient way of hydrogen generation if it can be effectively catalyzed. In this work, a series of cobalt–molybdenum–boron (Co–Mo–B) nanoparticles (NPs) on copper (Cu) foil are introduced as catalysts for NH3BH3 hydrolysis by electroless deposition method. The influence of the depositing pH value on the catalytic property is investigated by adjusting the pH value ranged from 10.5 to 12.0. By optimizing the value to 11, the ultrafine Co–Mo–B NPs with the grain size around 4.3 nm show the best catalytic property for NH3BH3 hydrolysis. The hydrogen generation rate reaches 5818.0 mL·min−1·g−1 when the hydrolysis temperature is 298 K. The thermodynamic tests show that the lower activation energy (Ea) is estimated to be 59.3 kJ·mol−1. It can be found that the catalytic property in this work overtakes that of partial non-precious metal NPs, and is even better than some precious metal NPs previously reported. The hydrolysis reaction of NH3BH3 catalyzed by ultrafine Co–Mo–B NPs is a non-spontaneous process. In addition, the cycling ability of the ultrafine Co–Mo–B NPs is also studied and the results demonstrate that the catalyst is a recyclable one toward the hydrolysis of NH3BH3 under mild reaction conditions.  相似文献   

11.
In this work, cobalt–tungsten–boron nanoparticles (Co–W–B) have been successfully deposited on foam Ni to manufacture thin-film catalysts by electroless plating technique and applied in hydrogen generation from ammonia borane (NH3BH3) hydrolysis. Physicochemical properties of Co–W–B nanoparticles are characterized by XRD (Powder X–ray diffraction), SEM (Scanning electron microscopy), and EDS (Energy dispersive X–ray spectroscopy). It is observed that Co–W–B showed irregular spherical structure on the surface of foam Ni substrate. An increase of depositional pH value in the preparation process leads to the change of particle size. When the pH value is equal to 11.5, as-synthesized Co–W–B exhibits the smaller particle size, which suggests that depositional pH value has directly impacted the nucleation and growth of catalysis particles. The optimized Co–W–B catalyst displays higher catalytic activity toward NH3BH3 hydrolysis with a specific rate of hydrogen generation of 12933.3 mL min?1·g?1 at room temperature. Moreover, the lower apparent activation energy of 47.3 kJ mol?1 is achieved. Compared with previously reported catalysts, the as-obtained catalytic performance is situated at the better rank. Moreover, the reusability has been investigated under the mild NH3BH3 hydrolysis conditions. It reveals that as-fabricated thin-film Co–W–B maintains excellent durability after five cycles. A possible mechanism for the released hydrogen from NH3BH3 hydrolysis using Co–W–B catalyst has been proposed.  相似文献   

12.
Bimetallic-based RuCo and RuCu catalysts, supported on γ-Al2O3 (1.5 wt% Ru as theoretical value), were synthesized by polyol method. Ru, Co, and Cu acetylacetonates were used as precursors and ethylene glycol as reducing agent. The as-synthesized catalysts were characterized by SEM, TEM, XRD and XPS, and tested in ammonia-borane (NH3BH3) hydrolytic dehydrogenation at variable amount of catalyst (10-30 wt%), concentration of NH3BH3 (1.0-0.65 M), and temperatures (50-65 °C). The reactions were monitored by volumetric (inverted burette) and spectroscopic methods (11B and 11B{1H} NMR). It was found that the best bimetallic catalysts are those having a molar ratio Ru:Co and Ru:Cu of 1:1 such as RuCo > RuCu ∼ Ru. They, i.e. RuCo and RuCu, consist of nanosized spherical particles of Ru0Co(OH)2 and Ru0Cu0, respectively. Kinetic investigation highlights similar rate laws with activation energies of 47 kJ mol−1 and 52 kJ mol−1, respectively, and, for both, reaction orders of 1 versus both the NH3BH3 and the catalytic free sites concentrations. 11B and 11B{1H} NMR investigation confirmed (i) a more effective NH3BH3 hydrolytic dehydrogenation in the presence of RuCo catalyst even though a loss of activity after the first run was observed for both catalysts, and (ii) a rapid NH3BH3 hydrolysis with initial formation of B(OH)4, which besides favors equilibriums of formation of polyborates. These results are reported and the reaction mechanism discussed herein.  相似文献   

13.
Agglomeration of CoB catalysts is a severe problem in hydrogen generation from NaBH4 hydrolysis. Herein, highly dispersed carbon nanofiber immobilized CoB catalysts (CoB/CN) were synthesized by a combined prereduction and carbonization method, which is used in hydrogen generation from NaBH4 hydrolysis. Morphological evolution of carbon nanofibers, phase structure and elemental distribution of CoB/CN catalysts are explored by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Compared to Co/carbon nanofiber catalysts (Co/CN) without prereduction, CoB/CN catalysts can afford higher CoB dispersity and specific surface area because the migration rate of cobalt species during carbonization is effectively retarded by prereduction. Hence the agglomeration of magnetic CoB nanoparticles can be effectively inhibited. The hydrogen generation experiment shows that CoB/CN catalysts process higher catalytic activity and lower activation energy than Co/CN.  相似文献   

14.
Co@Ru/γ-Al2O3 core–shell structure catalysts with Co/Ru different weight ratios are successfully prepared via surface displacement reaction. This novel route including reduction of Co core by NaBH4 on the surface of γ-Al2O3 and then substitution of Co species with Ru species, the resultant of reduction of RuCl3 precursor with N2H4. These catalysts are characterized with techniques X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), high resolution transmission electron microscopy (HRTEM), N2 adsorption/desorption (BET), temperature programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS) and Fourier transform infra-red (FTIR) of CO adsorbed. The characterization results confirm a uniform dispersion of Co@Ru nanoparticles with core–shell structure over γ-Al2O3. The core–shell Co@Ru/γ-Al2O3 catalysts show the remarkable catalytic activity towards Fischer–Tropsch synthesis (FTS) in comparison with Co/γ-Al2O3, which is related to special core–shell structure. These catalysts exhibited excellent abilities in the cases of increasing formation of long-chain hydrocarbons and suppressing selectivity to lighter hydrocarbons.  相似文献   

15.
Nickel-based bimetallic catalysts were screened using the sodium borohydride NaBH4 hydrolysis and the aqueous hydrazine borane N2H4BH3 dehydrogenation. A total of 22 bimetallic catalysts were synthesized according to an easy process while focusing on metals like Fe, Co, Ni, Cu, Rh, Pd, Ag, Ir, Pt and Au. In the end, the bimetallic candidate Ni87.5Pt12.5 showed to be the most active and the most selective for the dehydrogenation of N2H4BH3. At 70?°C, it is able to decompose N2H4BH3 into 5.8 equivalents of H2+N2 in less than 12?min such as: N2H4BH3?+?3H2O?→?0.95 N2?+?0.1 NH3?+?B(OH)3?+?4.85H2. Durability and stability tests were also performed. In our conditions, Ni87.5Pt12.5 was found to suffer from small loss of performance because of an electronic evolution of the catalytic surface leading to modified sorption properties of the catalytic sites. Our main results are reported and discussed herein.  相似文献   

16.
Amongst different amine-borane derivatives, methylamine-borane (CH3NH2BH3) seems to be one of the capable aspirants in the storing of hydrogen attributable to its high hydrogen capacity, stability and aptitude to generate hydrogen through its catalytic hydrolysis reaction under ambient conditions. In this research paper, we report that cobalt nanoparticles supported on alumina nanofibers (Co/Al2O3) are acting as active nanocatalyst for catalytic hydrolysis of methylamine-borane. Co/Al2O3 nanocatalyst was fabricated by double-solvent method followed with wet-chemical reduction, and was characterized by utilizing various spectroscopic methods and imaging techniques. The results gathered from these analyses showed that the formation Al2O3 nanofibers supported cobalt(0) nanoparticles with a mean diameter of 3.9 ± 1.2 nm. The catalytic feat of these cobalt nanoparticles was scrutinized in the catalytic hydrolysis of methylamine-borane by considering their activity and durability performances. They achieve releasing of 3.0 equivalent of H2 via methylamine-borane hydrolysis at room temperature (initial TOF = 297 mol H2/mol metal × h). Along with activity the catalytic durability of Co/Al2O3 was also studied by carrying out recyclability tests and it was found that these supported cobalt nanoparticles have good durability during the course of the catalytic recycles so that Co/Al2O3 preserves almost its innate activity at 5th catalytic recycle. The studies presented here also contains kinetic investigation of Co/Al2O3 catalyzed methylamine borane hydrolysis depending on the temperature, cobalt and methylamine borane concentrations, which were used to define rate expression and the activation energy of the catalytic reaction.  相似文献   

17.
The catalyst with high activity and durability plays a crucial role in the hydrogen generation systems for the portable fuel cell generators. In the present study, a ruthenium supported on graphite catalyst (Ru/G) for hydrogen generation from sodium borohydride (NaBH4) solution is prepared by a modified impregnation method. This is done by surface pretreatment with NH2 functionalization via silanization, followed by adsorption of Ru (III) ion onto the surface, and then reduced by a reducing agent. The obtained catalyst is characterized by transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). Very uniform Ru nanoparticles with sizes of about 10 nm are chemically bonded on the graphite surface. The hydrolysis kinetics measurements show that the concentrations of NaBH4 and NaOH all exert considerable influence on the catalytic activity of Ru/G catalyst towards the hydrolysis reaction of NaBH4. A hydrogen generation rate of 32.3 L min−1 g−1 (Ru) in a 10 wt.% NaBH4 + 5 wt.% NaOH solution has been achieved, which is comparable to other noble catalysts that have been reported.  相似文献   

18.
Achieving high catalytic performance with the lowest possible amount of noble metal is critical for any catalytic applications. Herein, we report a controllable method of preparing low Ru loaded, N-doped porous carbon embedded with cobalt oxide species (Ru/CoOx@NPC) using core-shell metal-organic framework (MOF) as a template. The optimized catalyst exhibits a highly powerful yet stable performance of H2 production through sodium borohydride (NaBH4) hydrolysis. The Ru/CoOx@NPC catalyst shows a fast H2 generation rate (8019.5 mL min?1 gcat?1), high turnover frequency (1118.6 mol min?1 molRu?1), and reusability. The carbonized ZIF-8 core and the ZIF-67 outer shell supplies a porous carbon moiety that not only improves the conductivity and but also provides uniform distribution of the active sites. The XPS analysis indicates that there is a strong electronic interaction between Co species and Ru species. The superior catalytic performance can be attributable to the large specific surface area as well as the synergy between Co-oxide and Ru clusters.  相似文献   

19.
The catalytic dehydrogenation of ammonia borane (NH3BH3, AB) molecule is most frequently employed by metal catalysts, but a reliable dehydrogenation mechanism in molecular level has yet to be fully illuminated. Herein, adopting the density functional theory (DFT) method, the dehydrogenation mechanism and performance of NH3BH3 under the transition metal catalysts (Cu/MgO, Co/MgO, CuCo/MgO) were studied. The calculated results show that the dehydrogenation mechanism of AB refers to stepwise dehydrogenation mechanism: AB is adsorbed in the transition metal catalysts firstly, then one H(N) atom transferred to H(B) of ―BH3 and to form H2 molecule via the broken of B―H and N―H bond, finally, H2 molecule desorption from the catalyst complexes. Among the transition metal catalysts, CuCo/MgO have the perfect catalytic activity in dehydrogenation reaction of NH3BH3, its barrier energy of the feasible pathway (path A) is 22.26 kcal/mol, which is lower than the barrier energy of AB‐Cu/MgO(28.13 kcal/mol), AB‐Co/MgO(27.46 kcal/mol), and the results of thermogravimetric analysis further verified the reasonability of DFT calculational results. Besides, partial density of states calculational results show the electron orbital hybridization of Cu, Co atom may account for the excellent catalytic performance of CuCo/MgO(100) compared with the Cu/MgO(100) and Co/MgO(100) in dehydrogenation process of AB.  相似文献   

20.
The multi-metallic nanocatalysts of ruthenium nanoclusters-on-transition metal/transition metal oxide nanoparticles (TM/TMO NPs) then supported on carbon (Ru/Ni/NiO/C or Ru/Co/Co3O4/C) were designed and synthesized. The Ni/NiO or Co/Co3O4 NPs strongly stabalized the ruthenium nanoclusters by the interfacial interaction among them. These catalysts exhibited high catalytic activity and 100% selectivity to decalin for naphthalene hydrogenation due to the synergy effect of multiple catalytic sites, where naphthalene was absorbed and activated at the TMO sites (NiO or Co3O4), H2 was activated at the Ru sites and it produced the activated H* species, H* was transferred to the surface of NiO or Co3O4 by the hydrogen spillover effect of TM (Ni or Co), reacting with the activated naphthalene and forming decalin. The nanostructures and synergetic effect of the Ru/Ni/NiO/C and Ru/Co/Co3O4/C catalysts were revealed by a series of techniques, such as high-resolution transmission electron microscope (HRTEM), temperature-programmed reduction (TPR), scanning transmission electron microscopy-energy dispersive X-ray spectroscopy (STEM-EDS) mapping, high-sensitivity low-energy ion scattering (HS-LEIS) and X-ray absorption spectroscopy (XAS). It is promising that the hydrogen storage can proceed at room temperature via catalyzing naphthalene hydrogenation over the Ru/Ni/NiO/C or Ru/Co/Co3O4/C catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号