首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
In this article, we discuss the effect of a compatibilizer for binary blends on the properties of ternary blends composed of high‐density polyethylene (HDPE), polypropylene (PP), or polystyrene (PS) and poly(vinyl chloride) (PVC) virgin polymers with a simulated waste plastics fraction. Chlorinated polyethylene (CPE), ethylene–propylene rubber (EPR), and their 1/1 (w/w) mixture were tested as compatibilizers for the HDPE/PP/PVC ternary blend. CPE, styrene‐ethylene‐propylene block copolymer (SEP), or their 1/1 (w/w) mixture were tested as compatibilizers for the HDPE/PS/PVC ternary blend. The composition of the ternary blends were fixed at 8/1/1 by weight ratio. The amount of the compatibilizer was 3 phr. Rheological, mechanical, and thermal properties were measured. For the 8/1/1 HDPE/PP/PVC ternary blends, the tensile strength was slightly decreased, but the impact strength was significantly increased by adding EPR, CPE, or their mixture. EPR exhibited the most significant impact modification effect for the ternary blends. In a similar way, for 8/1/1 HDPE/PS/PVC ternary blends, on adding SEP, CPE, or their mixture, the tensile strength was slightly decreased, but the impact strength was noticeably increased. It was found that the SEP worked much better as an impact modifier for the ternary blends than CPE or the SEP/CPE mixture did. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1048–1053, 2000  相似文献   

2.
Polyolefin binary and ternary blends were prepared from polypropylene (PP), an ethylene–α‐olefin copolymer (mPE), and high‐density polyethylene (HDPE) on the basis of the viscosity ratio of the dispersed phase to the continuous phase. In PP/mPE/HDPE blends, fibrils were observed when the dispersed‐phase (mPE/HDPE) viscosity was less than that of PP, or when the viscosity of mPE was less than that of PP, although the viscosity of mPE/HDPE was greater than that of PP. The notched impact strength and mechanical properties such as the yield strength, flexural modulus, and hardness of PP/mPE binary blends further increased with the addition of HDPE according to the type of HDPE. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 4027–4036, 2004  相似文献   

3.
The effect of annealing on the impact strength of PP/poly(ethylene-co-propylene) (PEP) and PP/PEP/PE blends was studied with regard to the structure of PEP and the polyethylene crystallinity. The tensile impact strength of annealed blends was remarkably affected by the PEP structure such as molecular weight and comonomer composition and the annealing temperature, while the brittle temperature was scarcely affected. For the PP/PEP/PE blends, annealing at temperatures above the melting point of PE lowers the tensile impact strength in a similar manner as the PP/crystalline PEP blend. These phenomena were explained on the basis of the deformation mechanism presented in the previous article, that is, a thicker interfacial layer of PP and PEP forms by means of annealing to increase the energy needed to deform the interface. By using a scanning electron microscope, the transition layer was observed at the interface between amorphous PEP and PE in the PP/amorphous PEP/PE blend after etching with nitric acid. The formation of a thicker transition layer between amorphous PEP and PE and a sizeable increase in PE particle size by annealing was observed. The phenomena should be correlated with the impact sensitivity, especially tensile impact strength, in the PP/crystalline PEP and PP/amorphous PEP/PE blends. A reasonable explanation of the microstructure in PP/PEP blends has been developed in terms of comonomer composition and melting property of PEP.  相似文献   

4.
In this paper the sbrittle-ductile transition of polypropylene, high density polyethylene, and a styrene-butadiene-styrene triblock copolymer (PP/HDPE/SBS) ternary blends is investigated for fixed compositions and prepared under various conditions. The morphology of the SBS dispersed phase particles and impact strength of the PP ternary blends is closely related to the processing conditions. There is a sharp Brittle-Ductile transition for the ternary blends when interparticle distance T becomes less than the critical interparticle distance Tc. Both the impact strength in general and more specifically, Tc depend upon the toughness of the PP/HDPE composite matrix.  相似文献   

5.
This work was aimed to counteract the effect of ethylene‐α‐olefin copolymers (POE) by reinforcing the polypropylene (PP)/POE blends with high density polyethylene (HDPE) particles and, thus, achieved a balance between toughness and strength for the PP/POE/HDPE blends. The results showed that addition of HDPE resulted in an increasing wide stress plateau and more ductile fracture behavior. With the increase of HDPE content, the elongation at break of the blends increased rapidly without obvious decrease of yield strength and Young's modulus, and the notched izod impact strength of the blends can reach as high as 63 kJ/m2 at 20 wt % HDPE loading. The storage modulus of PP blends increased and the glass transition temperature of each component of the blends shifted close to each other when HDPE was added. The crystallization of HDPE phase led to an increase of the total crystallinity of the blend. With increasing HDPE content, the dispersed POE particle size was obviously decreased, and the interparticle distance was effectively reduced and the blend rearranged into much more and obvious core‐shell structure. The fracture surface also changed from irregular striation to the regularly distant striations, displaying much obvious character of tough fracture. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
The crystallization, melting behavior, and morphology of a low ethylene content block propylene–ethylene copolymer (BPP) and a high-density polyethylene (HDPE) blend were studied. It was found that the existence of ethylene–propylene rubber (EPR) in BPP has more influence on the crystallization of HDPE than on that of PP. This leads to the decreasing of the melting temperature of the HDPE component in the blends. It is suggested that the EPR component in BPP shifted to the HDPE component during the blending process. The crystallinity of the HDPE phase in the blends decreased with increasing BPP content. The morphology of these blends was studied by polarized light microscopy (PLM) and SEM. For a BPP-rich blend, it was observed that the HDPE phase formed particles dispersed in the PP matrix. The amorphous EPR chains may penetrate into HDPE particles to form a transition layer. © 1998 John Wiley & Sons, Inc. J. Appl. Polym. Sci. 69: 2469–2475, 1998  相似文献   

7.
The tensile properties and morphology of the polyolefin ternary blends of ethylenepropylene–diene terpolymer (EPDM), polypropylene and high density polyethylene were studied. Blends were prepared in a laboratory internal mixer where EPDM was cured in the presence of PP and HDPE under shear with dicumyl peroxide (DCP). For comparison, blends were also prepared from EPDM which was dynamically cured alone and blended with PP and HDPE later (cure–blend). The effect of DCP concentration, intensity of the shear mixing, and rubber/plastics composition was studied. The tensile strength and modulus increased with increasing DCP concentration in the blends of EPDM-rich compositions but decreased with increasing DCP concentration in blends of PP-rich compositions. In the morphological analysis by scanning electron microscopy (SEM), the small amount of EPDM acted as a compatibilizer to HDPE and PP. It was also revealed that the dynamic curing process could reduce the domain size of the crosslinked EPDM phase. When the EPDM forms the matrix, the phase separation effect becomes dominant between the EPDM matrix and PP or HDPE domain due to the crosslinking in the matrix.  相似文献   

8.
Blending of high density polyethylene (HDPE), natural rubber (NR), and thermoplastic tapioca starch (TPS) have been studied. Two series of samples having 5–30 wt% of TPS were prepared: (a) unvulcanized blends (control) and (b) dynamically vulcanized HDPE/NR/TPS blends. The composition of the HDPE/NR was constant and fixed at a blend ratio of 70/30. Morphology studies by SEM showed that the TPS particles were homogeneously dispersed and well‐embedded in vulcanized HDPE/NR matrix. The SEM micrographs showed agreement with the tensile strength and elongation at break values. Tensile strength improved significanly when the HDPE/NR/TPS blends were vulcanized by using sulfur curative system. The enhancement in tensile properties is attributed to the crosslinking reaction within the NR phase. J. VINYL ADDIT. TECHNOL., 18:192–197, 2012. © 2012 Society of Plastics Engineers  相似文献   

9.
The morphology of some ternary blends was investigated. In all of the blends polypropylene, as the major phase, was blended with two different minor phases, ethylene–propylene–diene terpolymer (EPDM) or ethylene–propylene–rubber (EPR) as the first minor phase and high‐density polyethylene (HDPE) or polystyrene (PS) as the second minor phase. All the blends were investigated in a constant composition of 70/15/15 wt %. Theoretical models predict that the dispersed phase of a multiphase polymer blend will either form an encapsulation‐type phase morphology or phases will remain separately dispersed, depending on which morphology has the lower free energy or positive spreading coefficient. Interfacial interaction between phases was found to play a significant role in determining the type of morphology of these blend systems. A core–shell‐type morphology for HDPE encapsulated by rubber was obtained for PP/rubber/PE ternary blends, whereas PP/rubber/PS blends showed a separately dispersed type of morphology. These results were found to be in good agreement with the theoretical predictions. Steady‐state torque for each component was used to study the effect of melt viscosity ratio on the morphology of the blends. It was found that the torque ratios affect only the size of the dispersed phases and have no appreciable influence on the type of morphology. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1129–1137, 2001  相似文献   

10.
In this work, the morphologies of polypropylene (PP)/ethylene‐propylene‐diene (EPDM) rubber/high density polyethylene (HDPE) 70/20/10 blends were studied and compared with the predictions of the spreading coefficient and minimum free energy models. The interfacial tension of PP/HDPE, PP/EPDM, and HDPE/EPDM blends were obtained by fitting the experimental dynamic storage modulus data to Palierne's theory. The prediction results showed core‐shell morphology (core of HDPE and shell of EPDM) in PP matrix. The PP/EPDM/HDPE blends were respectively prepared by direct extrusion and lateral injection method. Core‐shell morphology (core of HDPE and shell of EPDM) could be obtained with direct extrusion corresponding to the predicted morphology. The morphology of PP/EPDM/HDPE blends could be effectively controlled by lateral injection method. For PP/EPDM/HDPE blend prepared by lateral injection method, HDPE and EPDM phase were dispersed independently in PP matrix. It was found that the different morphology of PP/EPDM/HDPE blends prepared by two methods showed different rheological behavior. When the core‐shell morphology (core of HDPE and shell of EPDM) appeared, the EPDM shell could confine the deformation of HDPE core significantly, so the interfacial energy contribution of dispersed phase on the storage modulus of blends would be weaken in the low frequency region. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

11.
The deformation and fracture behavior of several dynamic vulcanizate blends of isotactic polypropylene with ethylene‐propylene‐diene rubber (EPDM) was examined and compared with those of uncrosslinked blends of PP/EPDM. These blends were prepared by melt mixing in an internal mixer at 190°C in a composition range of 10–40 wt % EPDM rubber. The variation in yield stress, the strength of fibrils of the craze, and the number density of the EPDM rubber domains (morphology fixation) that are dominant factors for enhancing interfacial adhesion and toughness in dynamic vulcanizate blends were evaluated. The ductility and toughness of these materials were explained in light of the composition between crack formation and the degree of plastic deformation through crazing and shear yielding. The physicomechanical properties including the hardness, yield stress, Young's modulus, percentage elongation, impact strength, flexural strength, and flexural modulus of dynamic vulcanized blends were found to be consistent and displayed higher values compared with uncrosslinked blends. The nucleation effect of the crosslinked particles and the decrease of crystallinity of the EPDM rubber were also considered to contribute to the improvement in the impact strength. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2089–2103, 2000  相似文献   

12.
The rheological properties and crystalline structure of the polyolefin ternary blends of EPDM/polypropylene/high density polyethylene were studied. Blends were prepared in a laboratory internal mixer by two different methods. In blend–cure process, blending and curing were performed simultaneously and EPDM was cured by dicumyl peroxide (DCP) in the presence of PP/HDPE under shear. The cure–blend was to cure EPDM alone first under shear (dynamic curing) and then mix the cured EPDM with PP and HDPE. The effect of DCP concentration, intensity of the shear mixing, and the rubber/plastic composition were studied using capillary rheometer and X-ray diffractometer. The PP-rich ternary blends showed the effect of the mechanooxidative degradation of PP by shear and peroxide. The melt viscosity increased with increasing DCP concentration in blends of EPDM-rich compositions. X-ray diffraction studies revealed that the inclusion of 25 wt % of linear EPDM in the PP/HDPE mixture for the PP-rich ternary blends changed the crystal structure of polypropylene component in the ternary blends. However, the dynamic curing did not alter the crystal structure of PP or HDPE in the blends.  相似文献   

13.
The compatibilization of mixtures of polyolefins or of polyolefins with polystyrene using either liquid polybutadiene (l-PB)/organic peroxide or styrene-butadiene-styrene (SBS) block copolymers was investigated. Tensile impact strength was chosen as a measure of compatibility. Binary blends LDPE/high-impact polystyrene (HIPS) and LDPE/poly(propylene) (PP) as well as LDPE/HDPE/PP/HIPS blends were prepared by blending in the chamber of a Brabender Plasticorder. Composition of the blends corresponds to real commingled plastic waste. It was found that l-PB-based compatibilizer enhanced the impact strength of LDPE/HIPS blends with LDPE contents higher than 60 wt.-% only. Also SBS copolymer enhanced the impact strength of LDPE/PP blends with LDPE contents higher than 40 wt.-%. Both the compatibilizers substantially increased the toughness of LDPE/HDPE/PP/HIPS blends with composition similar to the municipal plastic waste.  相似文献   

14.
通过乳液聚合方法制备了不同橡胶粒径和橡胶相组成比的新型核-壳丙烯酸酯类抗冲改性剂(N-AIM),将其与聚甲基丙烯酸甲酯(PMMA)进行熔融共混,得到了PMMA/N-AIM共混物。对PMMA/N-AIM共混物的形态结构、冲击性能和光学性能分别进行了考察。通过透射电镜(TEM)分析表明,橡胶粒径为100 nm时改性剂在基体中发生聚集,大于100 nm时均可均匀分散在基体中;冲击测试结果表明,随着N-AIM橡胶粒径的增加,共混物的冲击强度先增大后减小;光学测试表明橡胶组成比影响共混物的光学性能。  相似文献   

15.
设计合成了一系列不同相对分子质量和乙烯平均序列长度的乙丙嵌段共聚物(EP),并将其作为聚丙烯(PP)/二元乙丙橡胶(EPR)共混体系的增容剂,考察了EP用量、相对分子质量及乙烯平均序列长度对共混体系性能及分散相形态演变的影响。结果表明,EP增容PP/EPR体系时存在最佳添加量,少量EP的加入可有效提高PP/EPR共混体系的抗冲击性能,并对分散相尺寸及形态起到良好的调控作用;同时,EP的相对分子质量越大对共混体系的冲击性能提高越明显,EP的组成与EPR越接近,对共混体系的增容效果越明显。  相似文献   

16.
In this paper the influence of temperature and composition on the dynamic behavior and morphology of polypropylene (PP)/high-density polyethylene (HDPE) blends were studied. The blend composition ranged from 5 to 30 wt% of dispersed phase (HDPE) and the temperatures ranged from 180 to 220 °C. The interfacial tension between PP and HDPE at temperatures of 180, 200 and 220 °C was obtained from fitting Palierne's emulsion model [1] to the experimental data of PP/HDPE blends with different compositions and from the weighted relaxation spectra of PP/HDPE blends with different compositions, following Gramespacher and Meissner [2] analysis. The interfacial tension between PP and HDPE as inferred from the rheological measurements was shown to depend on PP/HDPE blend composition. However, the results indicated that there is a range of PP/HDPE blend composition for which interfacial tension between PP and HDPE is constant. Considering these values, it was shown that interfacial tension between PP and HDPE decreases linearly with increasing temperature.  相似文献   

17.
采用过氧化二异丙苯(DCP)作为降解剂,以聚丙烯(PP)为基体,以三元乙丙橡胶(EPDM)为增韧剂,研究了EPDM对降解PP/EPDM共混物力学性能的影响,并利用扫描电子显微镜(SEM)对共混体系微观形貌进行了表征。熔体质量流动速率结果表明:随着EPDM质量分数从10%增加到30%时,对应共混物的熔体质量流动速率明显下降,从14.8 g/10 min下降到10.8 g/10 min。随着EPDM用量的增加,共混物的冲击强度明显增大,从30.06J/m增长到90.26 J/m,拉伸强度有所减小。SEM照片显示,随着EPDM用量的增加,共混物中分散相的尺寸明显增大。因为EPDM含量的增加,导致分散的橡胶粒子产生"聚并",从而分散相的相区尺寸增大。  相似文献   

18.
The effect of high‐density polyethylene (HDPE)/polypropylene (PP) blending on the crystallinity as a function of the HDPE melt index was studied. The melting temperature and total amount of crystallinity in the HDPE/PP blends were lower than those of the pure polymers, regardless of the blend composition and melt index. The effects of the melt index, blending, and foaming conditions (foaming temperature and foaming time) on the void fractions of HDPEs of various melt indices and HDPE/PP blends were also investigated. The void fraction was strongly dependent on the foaming time, foaming temperature, and blend composition as well as the melt index of HDPE. The void fraction of the foamed 30:70 HDPE/PP blend was always higher than that of the foamed 50:50 HDPE/PP blend, regardless of the melt index. The microcellular structure could be greatly improved with a suitable ratio of HDPE to PP and with foaming above the melting temperature for long enough; however, using high‐melt‐index HDPE in the HDPE/PP blends had a deleterious effect on both the void fraction and cell morphology of the blends. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 364–371, 2004  相似文献   

19.
Effect of drawing temperature on the melting behavior of oriented isotactic polypropylene (PP) modified with ethylene‐propylene‐diene monomer rubber with a small amount of high‐density polyethylene (HDPE) is explored in this study. Injection‐molded specimens both neat and 8 vol % modified PP were solid‐state drawn to natural drawing ratio and characterized by X‐ray diffraction, dynamic mechanical analysis (DMA), Charpy impact test and differential scanning calorimetry (DSC). A synergy of orientation and embedding rubber particles caused a significant increase of low‐temperature notched impact strength of oriented blends. It was shown, that the DSC method can be used successfully for the indirect but very sensitive characterization of orientation on a nanometre scale. At the drawing temperature of 120°C, the DSC data indicated an incomplete transition of the PP crystalline structure: This is reflected by splitting and shifting of the melting peak of PP. An increase of the melting temperature of the HDPE inclusions by 3.5°C reflects the high orientation. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
聚烯烃改性PET的研究   总被引:8,自引:2,他引:8  
通过PET与PP、HDPE、EPDM挤出共混,注射模塑制得试样。经DTA、SEM和力学性能测试,表征了共混体系的热行为、结构形态和力学性能。结果表明,在PET/PP(EPDM、HDPE)共混体系中,加入少量的PP-g-MI(EPDM-g-MAH、PE-g-MI),可较好地改善PEt与PP(EPDM、HDPE)之间的相容性,使分散相在PET基体连续相中分散均匀,分散相尺寸减小,增加了两相间界面的粘结力;同时对PET的结晶有较强的促进作用,使其冷结晶温度降低,改善了PET的加工性能;并且能大幅度提高共混物的冲击强度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号