首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ternary blends of polypropylene (PP), ethylene–octene copolymer (mPE), and high‐density polyethylene (HDPE) were prepared based on the phase behavior and physical properties of mPE/HDPE binary blends, and the results were interpreted in terms of morphology and both rheological and mechanical properties of the ternary blends as well as the binary blends. It was found that when mPE encapsulates HDPE in the PP matrix, compared to the encapsulation of mPE by HDPE, better blend properties were obtained, presumably because of the compatibilizing effect of mPE between PP and HDPE. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 179–188, 2004  相似文献   

2.
Ternary blends of isotactic polypropylene (PP), ethylene–octene copolymer (mPE), and high‐density polyethylene (HDPE) were prepared by melt mixing in a twin‐screw extruder with two different sequences of mixing: the simultaneous mixing of the three components (method I) and the premixing of mPE and HDPE followed by mixing with PP (method II). Regardless of the mixing sequence, mPE encapsulated HDPE in the PP matrix, although better mechanical properties were generally obtained with method II. The domain size was mainly determined by the viscosity ratio of mPE to PP in method I and by the viscosity ratio of the binary blend (mPE/HDPE) to PP in method II. Specimens prepared by injection molding gave much finer dispersions than compression‐molded specimens. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 804–811, 2004  相似文献   

3.
Crystallization behaviors, spherulite growth and structure, and the crystallization kinetics of polypropylene (PP)/ethylene‐α‐olefln copolymer (mPE)/high‐density polyethylene (HDPE) ternary blends and of mPE/HDPE binary blends have been studied using polarizing optical micrography (POM) and differential scanning calorimetry (DSC). In mPE/HDPE blends, large pendant groups of mPE disturbed spherulite growth of HDPE, leading to a different crystallite morphology and isothermal kinetics. Non‐isothermal properties, morphology, and isothermal crystallization kinetics of PP in ternary blends were significantly influenced by the composition and crystallization behavior of the mPE/HDPE binary blends as well as the crystallization condition. Polym. Eng. Sci. 44:1858–1865, 2004. © 2004 Society of Plastics Engineers.  相似文献   

4.
PP/mPE/无机填料三元复合材料的形态结构和力学性能   总被引:6,自引:1,他引:6  
采用刚性无机填料对茂金属聚乙烯(mPE)弹性体增韧聚丙烯(PP)二元共混体系进行增强,从而制得PP/mPE无机填料三元复合材料。分别探讨了CaCO3用量对复合材料拉伸性能和低温冲击性能影响,并考察了不同填料的增强效果。实验结果表明,由于弹性体的存在,无机填料的增强作用减弱;共混物的低温冲击强度也因填料的加入而大幅度下降,但经过表面处理的高岭土体系的冲击强度反而提高。SEM断裂形貌显示,未经表面处理的填料和基体的界面结合较弱,而改性高岭土则以层状结构分散于基体中,并呈现牢固的界面结合。  相似文献   

5.
茂金属聚乙烯的共混改性研究   总被引:3,自引:2,他引:3  
王港  陈晓媛  黄锐 《塑料科技》2002,(3):1-3,11
对三种茂金属聚乙烯 (mPE)做了DSC研究。将茂金属聚乙烯同传统聚烯烃 (HDPE ,PP ,LDPE)进行了共混研究 ,结果表明mPE的加入提高了LDPE的拉伸性能 ,使HDPE和PP的拉伸强度下降 ,但mPE含量在 2 0 %~2 5 %的范围内 ,拉伸强度和断裂伸长率下降很小。mPE的加入大大提高了PP和HDPE的冲击性能。对mPE/LDPE共混物吹膜进行了研究 ,测定了共混物的熔体流动速率 ,探索了吹膜的工艺条件 ,以及薄膜的拉伸性能、撕裂性能与共混组成比的关系。  相似文献   

6.
Binary blends of metallocene polyethylenes with polyethylenes and polypropylene were made in a co‐rotating twin‐screw extruder. A stretching process was carried out afterwards in the melt state at the extruder's exit to study the effect of the induced orientation on their thermal and tensile properties. Capillary rheometry was performed to the neat polymers to determine the viscosity ratios of the blend components as a function of the shear rate. SEM and Micro‐Raman analyses were done to study the morphology of the stretched and nonstretched blends. As expected, an increase in the modulus and tensile stress was obtained through blending. Additionally, the elastomeric behavior of the metallocene polyethylene (mPE) sample is observed in all blends and it was not lost through blending. Nevertheless, all blends without stretching exhibited a negative deviation of the linear additivity rule of blending. The stretching of the blends made with metallocene polyethylenes as matrices and other types of PEs as dispersed phase did not improve the tensile properties, although some differences in the dispersed phases were found by DSC, and microfibrils could be seen in the drawn mPE/HDPE blend. However, blending with PP produced an improvement in the modulus and tensile stress of the drawn samples in comparison to their undrawn counterpart. The tensile stresses of PP blends are more sensitive to the drawing process than the modulus, which can be attributed to the appearance of large fibril fractions during this process. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

7.
The melt rheological properties of binary uncompatibilized polypropylene–polyamide6 (PP–PA6) blends and ternary blends compatibilized with maleic anhydride‐grafted PP (PP–PP‐g‐MAH–PA6) were studied using a capillary rheometer. The experimental shear viscosities of blends were compared with those calculated from Utracki's relation. The deviation value δ between these two series of data was obtained. In binary PP–PA6 blends, when the compatibility between PP and PA6 was poor, the deformation recovery of dispersed PA6 particles played the dominant role during the capillary flow, the experimental values were smaller than those calculated, and δ was negative. The higher the dispersed phase content, the more deformed the droplets were and the lower the apparent shear viscosity. Also, the absolute value of δ increased with the dispersed phase composition. In ternary PP–PP‐g‐MAH–PA6 systems, when the compatibility between PP and PA6 was enhanced by PP‐g‐MAH, the elongation and break‐up of the dispersed particles played the dominant role, and the experimental values were higher than calculated. It was observed that the higher the dispersion of the PA6 phase, the higher the δ values of the ternary blends and the larger the positive deviation. Unlike uncompatibilized blends, under high shear stress with higher dispersed phase content, the PP‐g‐PA6 copolymer in compatibilized blends was pulled out from the interface and formed independent micelles in the matrix, which resulted in reduced total apparent shear viscosity. The δ value decreased with increasing shear stress. Copyright © 2006 Society of Chemical Industry  相似文献   

8.
Because of the poor impact behavior of polypropylene (PP) at low temperatures, the blending of PP with metallocene‐polymerized polyethylene (mPE) elastomers was investigated in this study. However, a reduced modulus of the overall blend was inevitable because of the addition to elastomers. To obtain a balance of the properties, we introduced rigid inorganic fillers to PP/mPE blends. The performance of the composites was characterized with tensile and Charpy notched impact tests, and the fracture morphology was examined with scanning electron microscopy. The results showed that the effects of fillers in a brittle matrix and in a ductile matrix were quantitatively different. For PP/mPE/filler ternary composites, the dependence of Young's modulus and yield strength on CaCO3 content was not significant compared with that of PP/filler binary composites, whereas the elongation at break and tensile toughness at room temperature for PP/mPE/filler systems were more improved. The impact strength of the PP/mPE blends filled with untreated glass beads and CaCO3 at a low temperature was lowered because of the weak interfacial bond. However, the values of the impact strength of the PP/mPE/filler composites at a low temperature remained at a high level compared with that of pure PP. In particular, a PP/mPE blend filled with surface‐treated kaolin had a higher low‐temperature impact toughness than the unfilled blend. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 3029–3035, 2002; DOI 10.1002/app.2333  相似文献   

9.
Morphology and mechanical properties of polypropylene (PP)/high density polyethylene (HDPE) blends modified by ethylene-propylene copolymers (EPC) with residual PE crystallinity were investigated. The EPC showed different interfacial behavior in PP/HDPE blends of different compositions. A 25/75 blend of PP/HDPE (weight ratio) showed improved tensile strength and elongation at break at low EPC content (5 wt %). For the PP/HDPE = 50/50 blend, the presence of the EPC component tended to make the PP dispresed phase structure transform into a cocontinuous one, probably caused by improved viscosity matching of the two components. Both tensile strength and elongation at break were improved at EPC content of 5 wt %. For PP/HDPE 75/25 blends, the much smaller dispersed HDPE phase and significantly improved elongation at break resulted from compatibilization by EPC copolymers. © 1995 John Wiley & Sons, Inc.  相似文献   

10.
In this article, polyamide 6 (PA6), maleic anhydride grafted ethylene‐propylene‐diene monomer (EPDM‐g‐MA), high‐density polyethylene (HDPE) were simultaneously added into an internal mixer to melt‐mixing for different periods. The relationship between morphology and rheological behaviors, crystallization, mechanical properties of PA6/EPDM‐g‐MA/HDPE blends were studied. The phase morphology observation revealed that PA6/EPDM‐g‐MA/HDPE (70/15/15 wt %) blend is constituted from PA6 matrix in which is dispersed core‐shell droplets of HDPE core encapsulated by EPDM‐g‐MA phase and indicated that the mixing time played a crucial role on the evolution of the core‐shell morphology. Rheological measurement manifested that the complex viscosity and storage modulus of ternary blends were notable higher than the pure polymer blends and binary blends which ascribed different phase morphology. Moreover, the maximum notched impact strength of PA6/EPDM‐g‐MA/HDPE blend was 80.7 KJ/m2 and this value was 10–11 times higher than that of pure PA6. Particularly, differential scanning calorimetry results indicated that the bulk crystallization temperature of HDPE (114.6°C) was partly weakened and a new crystallization peak appeared at a lower temperature of around 102.2°C as a result of co‐crystal of HDPE and EPDM‐g‐MA. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

11.
In this paper the sbrittle-ductile transition of polypropylene, high density polyethylene, and a styrene-butadiene-styrene triblock copolymer (PP/HDPE/SBS) ternary blends is investigated for fixed compositions and prepared under various conditions. The morphology of the SBS dispersed phase particles and impact strength of the PP ternary blends is closely related to the processing conditions. There is a sharp Brittle-Ductile transition for the ternary blends when interparticle distance T becomes less than the critical interparticle distance Tc. Both the impact strength in general and more specifically, Tc depend upon the toughness of the PP/HDPE composite matrix.  相似文献   

12.
In this work, the morphologies of polypropylene (PP)/ethylene‐propylene‐diene (EPDM) rubber/high density polyethylene (HDPE) 70/20/10 blends were studied and compared with the predictions of the spreading coefficient and minimum free energy models. The interfacial tension of PP/HDPE, PP/EPDM, and HDPE/EPDM blends were obtained by fitting the experimental dynamic storage modulus data to Palierne's theory. The prediction results showed core‐shell morphology (core of HDPE and shell of EPDM) in PP matrix. The PP/EPDM/HDPE blends were respectively prepared by direct extrusion and lateral injection method. Core‐shell morphology (core of HDPE and shell of EPDM) could be obtained with direct extrusion corresponding to the predicted morphology. The morphology of PP/EPDM/HDPE blends could be effectively controlled by lateral injection method. For PP/EPDM/HDPE blend prepared by lateral injection method, HDPE and EPDM phase were dispersed independently in PP matrix. It was found that the different morphology of PP/EPDM/HDPE blends prepared by two methods showed different rheological behavior. When the core‐shell morphology (core of HDPE and shell of EPDM) appeared, the EPDM shell could confine the deformation of HDPE core significantly, so the interfacial energy contribution of dispersed phase on the storage modulus of blends would be weaken in the low frequency region. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

13.
The morphology development of polypropylene (PP)/polyethylene terephthalate (PET)/styrene‐ethylene‐butylene‐styrene (SEBS) ternary blends and their fibers were studied by means of scanning electron microscopy (SEM) in conjunction with the melt linear viscoelastic measurements. The morphology of the blends was also predicted by using Harkin's spreading coefficient approach. The samples varying in composition with PP as the major phase and PET and SEBS as the minor phases were considered. Although SEM of the binary blends showed matrix‐dispersed type morphology, the ternary blend samples exhibited a morphological feature in which the dispersed phase formed aggregates consisting of both PET and SEBS particles distributed in the PP matrix. The SEM of the blend samples containing 30 and 40 wt % of total dispersed phase showed an agglomerated structure formed between the aggregates. The SEM of the PP/PET binary fiber blends showed long well‐oriented microfibrils of PET whereas in the ternary blends, the microfibrils were found to have lower aspect ratio with a fraction of the SEBS stuck on the microfibril fracture surfaces. These results were attributed to a core‐shell type morphology in which the PET and SEBS formed the core‐shells distributed in the matrix. The melt viscoelastic behavior of the ternary blends containing less than 30 wt % of the total dispersed phase was found to be similar to the matrix and binary blend samples whereas the samples containing 30 and 40 wt % of dispersed phases exhibited a pronounced viscosity upturn and nonterminal storage modulus in low frequency range. These results were found to be in good agreement with the morphological results. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
This work was aimed to counteract the effect of ethylene‐α‐olefin copolymers (POE) by reinforcing the polypropylene (PP)/POE blends with high density polyethylene (HDPE) particles and, thus, achieved a balance between toughness and strength for the PP/POE/HDPE blends. The results showed that addition of HDPE resulted in an increasing wide stress plateau and more ductile fracture behavior. With the increase of HDPE content, the elongation at break of the blends increased rapidly without obvious decrease of yield strength and Young's modulus, and the notched izod impact strength of the blends can reach as high as 63 kJ/m2 at 20 wt % HDPE loading. The storage modulus of PP blends increased and the glass transition temperature of each component of the blends shifted close to each other when HDPE was added. The crystallization of HDPE phase led to an increase of the total crystallinity of the blend. With increasing HDPE content, the dispersed POE particle size was obviously decreased, and the interparticle distance was effectively reduced and the blend rearranged into much more and obvious core‐shell structure. The fracture surface also changed from irregular striation to the regularly distant striations, displaying much obvious character of tough fracture. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
UHMWPE/HDPE共混物的流动性及力学性能的研究   总被引:7,自引:0,他引:7  
采用不同MFR的HDPE与UHMWPE进行熔体共混。结果表明UHMWPE/HDPE共混物流动性和力学性能的变化受体系组成、熔体粘度比等因素的影响较大。HDPE的MFR过高、过低或用量过多,均不利于共混物流动性及综合力学性能的改善。当HDPE作为分散相时,易于实现向UHMWPE高粘弹粒子的渗透、分散及结合,共混物的.MFR及拉伸屈服强度、断裂强度、断裂伸长率均比UHMWPE有提高,共混物表现出协同效应;当UHMWPE为分散相或二者熔体粘度比差异过大时,混合效果变差,共混物综合力学性能下降;在某些中间配比下,二者表现出增链缠结效应,共混物MFR明显降低。  相似文献   

16.
The morphology of some ternary blends was investigated. In all of the blends polypropylene, as the major phase, was blended with two different minor phases, ethylene–propylene–diene terpolymer (EPDM) or ethylene–propylene–rubber (EPR) as the first minor phase and high‐density polyethylene (HDPE) or polystyrene (PS) as the second minor phase. All the blends were investigated in a constant composition of 70/15/15 wt %. Theoretical models predict that the dispersed phase of a multiphase polymer blend will either form an encapsulation‐type phase morphology or phases will remain separately dispersed, depending on which morphology has the lower free energy or positive spreading coefficient. Interfacial interaction between phases was found to play a significant role in determining the type of morphology of these blend systems. A core–shell‐type morphology for HDPE encapsulated by rubber was obtained for PP/rubber/PE ternary blends, whereas PP/rubber/PS blends showed a separately dispersed type of morphology. These results were found to be in good agreement with the theoretical predictions. Steady‐state torque for each component was used to study the effect of melt viscosity ratio on the morphology of the blends. It was found that the torque ratios affect only the size of the dispersed phases and have no appreciable influence on the type of morphology. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1129–1137, 2001  相似文献   

17.
In this article, we discuss the effect of a compatibilizer for binary blends on the properties of ternary blends composed of high‐density polyethylene (HDPE), polypropylene (PP), or polystyrene (PS) and poly(vinyl chloride) (PVC) virgin polymers with a simulated waste plastics fraction. Chlorinated polyethylene (CPE), ethylene–propylene rubber (EPR), and their 1/1 (w/w) mixture were tested as compatibilizers for the HDPE/PP/PVC ternary blend. CPE, styrene‐ethylene‐propylene block copolymer (SEP), or their 1/1 (w/w) mixture were tested as compatibilizers for the HDPE/PS/PVC ternary blend. The composition of the ternary blends were fixed at 8/1/1 by weight ratio. The amount of the compatibilizer was 3 phr. Rheological, mechanical, and thermal properties were measured. For the 8/1/1 HDPE/PP/PVC ternary blends, the tensile strength was slightly decreased, but the impact strength was significantly increased by adding EPR, CPE, or their mixture. EPR exhibited the most significant impact modification effect for the ternary blends. In a similar way, for 8/1/1 HDPE/PS/PVC ternary blends, on adding SEP, CPE, or their mixture, the tensile strength was slightly decreased, but the impact strength was noticeably increased. It was found that the SEP worked much better as an impact modifier for the ternary blends than CPE or the SEP/CPE mixture did. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1048–1053, 2000  相似文献   

18.
Polymer blends, such as those resulting from recycling postconsumer plastics, often have poor mechanical properties. Microcellular foams have been shown to have the potential to improve properties, and permit higher‐value uses of mixed polymer streams. In this study, the effects of microcellular batch processing conditions (foaming time and temperature) and HDPE/PP blend compositions on the cell morphology (the average cell size and cell‐population density) and impact strength were studied. Optical microscopy was used to investigate the miscibility and crystalline morphology of the HDPE/PP blends. Pure HDPE and PP did not foam well at any processing conditions. Blending facilitated the formation of microcellular structures in polyolefins because of the poorly bonded interfaces of immiscible HDPE/PP blends, which favored cell nucleation. The experimental results indicated that well‐developed microcellular structures are produced in HDPE/PP blends at ratios of 50:50 and 30:70. The cell morphology had a strong relationship with the impact strength of foamed samples. Improvement in impact strength was associated with well‐developed microcellular morphology. Polym. Eng. Sci. 44:1551–1560, 2004. © 2004 Society of Plastics Engineers.  相似文献   

19.
The nonisothermal crystallization, melting behavior, and morphology of blends of polypropylene (PP) and a metallocene‐catalyzed polyethylene (mPE) elastomer were studied with differential scanning calorimetry, scanning electron microscopy, polarized optical microscopy, and X‐ray diffraction. The results showed that PP and mPE were partially miscible and could form some cocrystallization, although the extent was very small. A modified Avrami analysis and the Mo method were used to analyze the nonisothermal crystallization kinetics of the blends. The values of the Avrami exponent indicated that the crystallization nucleation of the blends was homogeneous, the growth of the spherulites was three‐dimensional, and the crystallization mechanism of PP was not affected by mPE. The crystallization activation energy was estimated with the Kissinger method. Interesting results were obtained with the modified Avrami analysis and Mo and Kissinger methods, and the conclusions were in good agreement. The addition of less mPE increased the overall crystallization rate of PP. The relationship between the composition and morphology of the blends was examined. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1203–1210, 2004  相似文献   

20.
Blends of two grades of polypropylene (PP) with thermotropic copolyester (Rodrun) contents of up to 40% were obtained by direct injection molding at different processing temperatures. In the skin of the molded specimens rather long fibers were seen in blends with low‐viscosity PP, whereas sheets were found when the high‐viscosity PP was the matrix. In the core, the viscosity of the matrix played a more relevant role than the viscosity ratio on the orientation level of the dispersed Rodrun phase. The better mechanical properties of the blends with the low viscosity PP are attributed to the morphology change of the dispersed phase from sheets to fibers when the viscosity of the matrix decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号